Sức bền vật liệu - Chương 4: Trạng thái ứng suất

pdf 60 trang vanle 3960
Bạn đang xem 20 trang mẫu của tài liệu "Sức bền vật liệu - Chương 4: Trạng thái ứng suất", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfsuc_ben_vat_lieu_chuong_4_trang_thai_ung_suat.pdf

Nội dung text: Sức bền vật liệu - Chương 4: Trạng thái ứng suất

  1. Strength Of Materials SỨC BỀN VẬT LIỆU Ngô Văn Cường Đại học công nghiệp TPHCM (Serious learning is the key to success.) 2 August 2015 Ngo Van Cuong-HCM University Of Industry 1
  2. Strength Of Materials Chương 4 TRẠNG THÁI ỨNG SUẤT 2 August 2015 Ngo Van Cuong-HCM University Of Industry 2
  3. Chương 4: Trạng thái ứng suất NỘI DUNG 4.1. Khái niệm về trạng thái ứng suất tại một điểm 4.2. Trạng thái ứng suất phẳng 4.3. Vòng tròn Mohr ứng suất 4.4. Trạng thái ứng suất phẳng đặc biệt 4.5. Trạng thái ứng suất khối 4.6. Quan hệ ứng suất – biến dạng. Định luật Hooke 4.7. Điều kiện bền cho phân tố ở TTƯS phức tạp – Các thuyết bền 2 August 2015 Ngo Van Cuong-HCM University Of Industry 3
  4. 4.1. Khái niệm về trạng thái ứng suất tại một điểm a. Khái niệm về trạng thái ứ.s tại một điểm  Trạng thái ứng suất tại một điểm là tập hợp tất cả các ứng suất pháp và ứng suất tiếp trên các mặt cắt khác nhau đi qua điểm đó. 2 August 2015 Ngo Van Cuong-HCM University Of Industry 4
  5. 4.1. Khái niệm về trạng thái ứng suất tại một điểm Để nghiên cứu TTƯS tại một điểm => tách ra phân tố lập phương vô cùng bé chứa điểm đó=> gắn hệ trục xyz => trên mỗi mặt vuông góc với trục có 3 thành phần ứng suất: 1 tp ứng suất pháp và 2 thành phần ứng suất tiếp 2 August 2015 Ngo Van Cuong-HCM University Of Industry 5
  6. 4.1. Khái niệm về trạng thái ứng suất tại một điểm  Chín thành phần ứng suất tác dụng trên 3 cặp mặt vuông góc với ba trục tạo thành ten-xơ ứng suất 2 August 2015 Ngo Van Cuong-HCM University Of Industry 6
  7. 4.1. Khái niệm về trạng thái ứng suất tại một điểm b. Mặt chính – ứng suất chính –phương chính  Mặt chính: Là mặt không có tác dụng của ứng suất tiếp.  Phương chính: là phương pháp tuyến của mặt chính.  Ứng suất chính: là ứng suất pháp tác dụng trên mặt chính.  Phân tố chính: ứng suất tiếp trên các mặt bằng 0 2 August 2015 Ngo Van Cuong-HCM University Of Industry 7
  8. 4.1. Khái niệm về trạng thái ứng suất tại một điểm c) Qui ước gọi tên các ứng suất chính:  Tại 1 điểm luôn tồn tại ba mặt chính vuông góc với nhau với ba ứng suất chính tương ứng ký hiệu là 1,2,3  Theo qui ước: d) Phân loại TTƯS - TTƯS đơn - TTƯS phẳng Nghiên cứu trạng thái ứng suất phẳng - TTƯS khối 2 August 2015 Ngo Van Cuong-HCM University Of Industry 8
  9. 4.1. Khái niệm về trạng thái ứng suất tại một điểm  TTƯS đơn: Hai trong ba ứng suất chính bằng không  TTƯS phẳng: Một trong ba ứng suất chính bằng không 2 August 2015 Ngo Van Cuong-HCM University Of Industry 9
  10. 4.1. Khái niệm về trạng thái ứng suất tại một điểm  TTƯS khối: Cả ba ứng suất chính khác không 4.2. TTƯS phẳng  Mặt vuông góc với trục z là mặt chính có ứng suất chính bằng 0 => Chỉ tồn tại các thành phần ứng suất trong mặt phẳng xOy 2 August 2015 Ngo Van Cuong-HCM University Of Industry 10
  11. 4.2. Trạng thái ứng suất phẳng  Qui ước dấu . Ứng suất pháp dương khi có chiều đi ra khỏi phân tố . Ứng suất tiếp có chiều dương khi đi vòng quanh phân tố theo chiều kim đồng hồ 2 August 2015 Ngo Van Cuong-HCM University Of Industry 11
  12. 4.2. Trạng thái ứng suất phẳng a) Định luật đối ứng của ứng suất tiếp Ứng suất tiếp trên hai mặt bất kỳ vuông góc với nhau có trị số bằng nhau, có chiều cùng đi vào cạnh chung hoặc cùng đi ra khỏi cạnh chung. TTƯS phẳng xác định bởi: x, y, xy 2 August 2015 Ngo Van Cuong-HCM University Of Industry 12
  13. 4.2. Trạng thái ứng suất phẳng b) Ứng suất trên mặt nghiêng ( //z) Mặt nghiêng có pháp tuyến u hợp với phương ngang x góc ( > 0: từ x quay đến u theo chiều ngược chiều kim đồng hồ) 2 August 2015 Ngo Van Cuong-HCM University Of Industry 13
  14. 4.2. Trạng thái ứng suất phẳng Qui ước dấu: . >0 chiều ngược kim đồng hồ . σu> 0 hướng ra . uv thuận chiều kim đồng hồ 2  FAAu 0  u  x cos  xy cos sin 2 yAAsin  yx sin cos 0 2  FAAAv 0  uv  xy cos  x cos sin 2 yxAAsin  y sin cos 0 2 August 2015 Ngo Van Cuong-HCM University Of Industry 14
  15. 4.2. Trạng thái ứng suất phẳng Trạng thái ứng suất phẳng    xyxy cos2sin 2 uxy 22    xysin 2os2 c uvxy 2 c) Ứng suất pháp cực trị là các ứng suất chính  Ứng suất pháp cực trị khi: 2 August 2015 Ngo Van Cuong-HCM University Of Industry 15
  16. 4.2. Trạng thái ứng suất phẳng  Các ứng suất chính (phươngchính) xác định từ đk: uv= 0 Từ (1) và (2):  0  Ứng suất pháp cực trị là các ứng suất chính 2 August 2015 Ngo Van Cuong-HCM University Of Industry 16
  17. 4.2. Trạng thái ứng suất phẳng  Hai phương chính vuông góc với nhau Hoặc: 2 August 2015 Ngo Van Cuong-HCM University Of Industry 17
  18. 4.2. Trạng thái ứng suất phẳng d) Ứng suất tiếp cực trị: mặt có ứng suất tiếp cực trị hợp với mặt chính góc 450 d xy 0 0245tg  0 d 2 xy 2 xy 2 mxyax,min 2 e) Bất biến của TTƯS phẳng: tổng các ứng suất pháp trên hai mặt bất kỳ vuông góc với nhau tại một điểm có giá trị không đổi 2 August 2015 Ngo Van Cuong-HCM University Of Industry 18
  19. 4.3. Vòng tròn Mohr ứng suất  Biết TTƯS tại một điểm => các thành phần ứng suất trên mặt nghiêng, ứng suất chính, phương chính theo công thức : PHƯƠNG PHÁP GIẢI TÍCH  Bằng đồ thị=> vòng tròn Mohr ứng suất 22 xyxy    uxy  cos2sin 2 22 2 2 xy uv sin 2  xyc os2 2 2 August 2015 Ngo Van Cuong-HCM University Of Industry 19
  20. 4.3. Vòng tròn Mohr ứng suất 22 xyxy 22 uuvxy 22 2 xy  c 22xy Đặt R  xy 2 2 Phương trình đường tròn tâm c bán kính R 2 xyxy   2 Tâm I,0 bán kính R=  xy 22 2 August 2015 Ngo Van Cuong-HCM University Of Industry 20
  21. 4.3. Vòng tròn Mohr ứng suất  Xác định hệ trục tọa độ o, D’ với trục hoành  song song C E  với trục x của phân tố, trục o F tung  song song với trục y xy  của phân tố và hướng y D  xuông dưới . Trên trục x hoành ta xác định hai điểm  E(x, 0) và điểm F(y, 0) 2 August 2015 Ngo Van Cuong-HCM University Of Industry 21
  22. 4.3. Vòng tròn Mohr ứng suất Vì có tọa độ u = x và uv = xy. Còn điểm D’ biểu diễn ứng suất trên mặt y ( = 900) vì có tọa độ u = y và uv = - xy bởi vì khi mặt nghiêng 0 quay một góc = 90 , ứng suất pháp u trở thành y và ứng suất tiếp uv trở thành giá trị ngược dấu với xy.  Kẻ đường thẳng nối hai điểm D và D’, cắt trục hoành ở điểm C.  Vẽ đường tròn tâm C đường kính DD’. Đây chính là vòng tròn ứng suất cần dựng 2 August 2015 Ngo Van Cuong-HCM University Of Industry 22
  23. 4.3. Vòng tròn Mohr ứng suất Cách dựng vòng tròn Mohr  Đặt vấn đề:  Biết x, y, xy = -yx  Tìm: u, uv  Tìm phương chính, ứng suất chính  Trong hệ trục (,) ● Chọn điểm M(x,xy) ● Chọn M’(y,yx=-xy) ● Nối MM’ cắt trục  tại C 2 August 2015 Ngo Van Cuong-HCM University Of Industry 23
  24. 4.3. Vòng tròn Mohr ứng suất Cách dựng vòng tròn Mohr Vòng tròn tâm C, bán kính CM vòng tròn Mohr 2 August 2015 Ngo Van Cuong-HCM University Of Industry 24
  25. 4.3. Vòng tròn Mohr ứng suất Cách dựng vòng tròn Mohr Từ điểm cực P(y,xy) kẻ tia phương u cắt vòng tròn tại N(u,uv) 2 August 2015 Ngo Van Cuong-HCM University Of Industry 25
  26. 4.3. Vòng tròn Mohr ứng suất Cách dựng vòng tròn Mohr  Phương chính I, PB, tương ứng với ứng suất chính I  Phương chính II, PA, tương ứng với ư/s chính II 4.4. TTƯS phẳng đặc biệt 2 August 2015 Ngo Van Cuong-HCM University Of Industry 26
  27. 4.4. TTƯS phẳng đặc biệt  TTƯS phẳng mà 1 trong 2 thành phần ứng suất pháp σx, σy bằng 0 => ký hiệu các thành phần ứng suất: σ và  Thanh chịu uốn ngang phẳng c M x QSyx zyz y, IIxx b c 2 August 2015 Ngo Van Cuong-HCM University Of Industry 27
  28. 4.4. TTƯS phẳng đặc biệt 2  2 max,min1,3 22 2 13  2 max 22  TTƯS trượt thuần túy: trên các mặt của phân tố chỉ có ứng suất tiếp Thanh chịu xoắn 2 August 2015 Ngo Van Cuong-HCM University Of Industry 28
  29. 4.4. TTƯS phẳng đặc biệt xy 0 M z xy Wp 2 August 2015 Ngo Van Cuong-HCM University Of Industry 29
  30. 4.5. Trạng thái ứng suất khối  TTƯS khối có cả 3 thành phần ứng suất chính 1, 2, 3 ≠ 0  Ứng với mỗi cặp ứng suất (1, 2), (1, 3), (2, 3) ta vẽ được 3 vòng tròn có tâm C1, C2, C3.  Lý thuyết đàn hồi đã chứng minh:  Ứng suất trong mặt cắt nghiêng bất kỳ (không// với mặt chính nào) tương ứng với 1 điểm nằm trong vùng gạch chéo 2 August 2015 Ngo Van Cuong-HCM University Of Industry 30
  31. 4.5. Trạng thái ứng suất khối  Các điểm nằm trên chu vi đường tròn C1(1, 2), tương ứng với các thành phần ứng suất trên mặt // với phương chính cònl ại 3 2 August 2015 Ngo Van Cuong-HCM University Of Industry 31
  32. 4.6. Quan hệ ứng suất–biến dạng 1. Trạng thái ứng suất đơn    x , , xyxzx EEE 2. Trạng thái ứng suất trượt thuần túy   xy ,   0 xyG yz zx 2 August 2015 Ngo Van Cuong-HCM University Of Industry 32
  33. 4.6. Quan hệ ứng suất–biến dạng 3. Trạng thái ứng suất tổng quát . Gt: biến dạng dài chỉ sinh ra ứng suất pháp, biến dạng góc làm phát sinh ứng suất tiếp . Theo nguyên lý cộng tác dụng     x y z x EEE 1  () E xyz 2 August 2015 Ngo Van Cuong-HCM University Of Industry 33
  34. 4.6. Quan hệ ứng suất–biến dạng a) Quan hệ ứng suất pháp – biến dạng dài b) Quan hệ ứng suất tiếp – biến dạng góc 2 August 2015 Ngo Van Cuong-HCM University Of Industry 34
  35. 4.6. Quan hệ ứng suất–biến dạng Biến dạng góc với E, μ, G là mô đun đàn hồi kéo (nén), hệ số Poisson, modulus đàn hồi trượt, liên hệ với nhau bởi công thức: E G 2(1)   Trạng thái ứng suất phẳng: 1 1         xE x y 1E 1 2  1 1 xy          xy yE y x 2E 2 1 G 2 August 2015 Ngo Van Cuong-HCM University Of Industry 35
  36. 4.6. Quan hệ ứng suất–biến dạng c) Quan hệ ứng suất pháp – biến dạng thể tích V = a1a2a3 V1= a1(1+1)a2(1+2)a3(1+3) VV  1 V 123 2 August 2015 Ngo Van Cuong-HCM University Of Industry 36
  37. 4.6. Quan hệ ứng suất–biến dạng Thế năng biến dạng đàn hồi Xét phân tố chính:  = 0 111 u       2221 1 2 2 3 3 1 222   2  ()       2E 1 2 31 2 3 2 1 3 2 August 2015 Ngo Van Cuong-HCM University Of Industry 37
  38. 4.6. Quan hệ ứng suất–biến dạng 2 August 2015 Ngo Van Cuong-HCM University Of Industry 38
  39. 4.6. Quan hệ ứng suất–biến dạng 2 August 2015 Ngo Van Cuong-HCM University Of Industry 39
  40. 4.7. Các thuyết bền A. Khái niệm về các thuyết bền  TTƯS đơn (kéo–nén đúng tâm): điều kiện bền:  TTƯS trượt thuần túy:  Giá trị các ứng suất cho phép xác định theo ứng suất nguy hiểm => từ thực nghiệm 2 August 2015 Ngo Van Cuong-HCM University Of Industry 40
  41. 4.7. Các thuyết bền TTƯS phức tạp: cần phải thực nghiệm để xác định những ứng suất nguy hiểm cho TTƯS tương ứng => không thực hiện được  Lý do:  Số lượng thí nghiệm lớn (để đáp ứng được các tỉ lệ giữa các ứng suất chính có thể xảy ra trong thực tế)  Kỹ thuật thí nghiệm chưa thực hiện được 2 August 2015 Ngo Van Cuong-HCM University Of Industry 41
  42. 4.7. Các thuyết bền . Không tiến hành thực nghiệm được => Không biết nguyên nhân gây ra sự phá hoại vật liệu => Giả thiết . Thuyết bền: Các giả thiết về nguyên nhân gây ra sự phá hoại vật liệu . Các nguyên nhân có thể: ứng suất, biến dạng, thế năng biến dạng đàn hồi, B. Các thuyết bền a. Thuyết bền 1 - Thuyết bền ứng suất pháp lớn nhất 2 August 2015 Ngo Van Cuong-HCM University Of Industry 42
  43. 4.7. Các thuyết bền • Thuyết bền thứ nhất do Galilê đưa ra năm 1638. Thuyết này cho rằng, vật liệu bị phá hỏng là do ứng suất pháp lớn nhất gây ra. • Thuyết bền này phát biểu như sau: “Hai trạng thái ứng suất phức tạp và đơn có độ bền tương đương nếu ứng suất pháp lớn nhất của chúng như nhau”. • Điều kiện bền • Đối với vật liệu dẻo []k = []n 2 August 2015 Ngo Van Cuong-HCM University Of Industry 43
  44. 4.7. Các thuyết bền  Thiếu sót lớn nhất của thuyết bền này là không kể đến ảnh hưởng của hai ứng suất chính còn lại. Ngoài ra, thực nghiệm cho thấy thuyết này không thích hợp với vật liệu dẻo. Còn đối với vật liệu giòn chỉ cho những kết quả phù hợp khi có một ứng suất chính rất lớn so với các ứng suất chính còn lại. Thuyết này hiện nay hầu như không dùng nữa. 2 August 2015 Ngo Van Cuong-HCM University Of Industry 44
  45. 4.7. Các thuyết bền b. Thuyết bền 2 - Thuyết bền biến dạng dài tương đối lớn nhất (Mariotte)  Thuyết bền thứ hai do Mariốt đưa ra năm 1682. Thuyết này cho rằng: vật liệu bị phá huỷ là do biến dạng dài tương đối cực đại của phân tố ở trạng thái ứng suất phức tạp đạt đến biến dạng dài tương đối ở trạng thái nguy hiểm của phân tố ở trạng thái ứng suất đơn.  Hai trạng thái ứng suất phức tạp và đơn sẽ có độ bền tương đương nếu độ biến dạng tỉ đối lớn nhất do chúng gây ra bằng nhau. 2 August 2015 Ngo Van Cuong-HCM University Of Industry 45
  46. 4.7. Các thuyết bền  Ðiều kiện bền được viết là:  Ưu điểm của thuyết bền thứ hai là có kể đến ảnh hưởng của ba ứng suất chính σ1, σ2 và σ3. Song cũng như thuyết bền thứ nhất, thuyết này cũng không thích hợp đối với vật liệu dẻo. Còn đối với vật liệu giòn thì nó chỉ cho kết quả phù hợp khi σ1> 0 và σ3 < 0. 2 August 2015 Ngo Van Cuong-HCM University Of Industry 46
  47. 4.7. Các thuyết bền  Thuyết này hiện nay hầu như không còn được dùng nữa. c. Thuyết bền thứ ba (thuyết bền ứng suất tiếp lớn nhất)  Thuyết bền thứ ba đưa ra năm 1773. Thuyết này cho rằng: vật liệu bị phá hoại là do ứng suất tiếp cực đại của phân tố ở trạng thái ứng suất phức tạp đạt đến ứng suất tiếp nguy hiểm của phân tố ở trạng thái ứng suất đơn. 2 August 2015 Ngo Van Cuong-HCM University Of Industry 47
  48. 4.7. Các thuyết bền  Hai trạng thái ứng suất phức tạp và đơn sẽ có độ bền tương đương nếu ứng suất tiếp lớn nhất của chúng bằng nhau.  Do đó điều kiện bền theo giả thuyết ứng suất tiếp lớn nhất:  Trong trường hợp ứng suất phẳng đặc biệt (hình ), ta có: 11    22 4  1m ax 22 2 August 2015 Ngo Van Cuong-HCM University Of Industry 48
  49. 4.7. Các thuyết bền 11  224 3min 22  Điều kiện bền theo giả thuyết ứng suất tiếp lớn nhất: 22 td 4    Thuyết bền ứng suất tiếp lớn nhất rất phù hợp với vật liệu dẻo nhưng lại không thích hợp đối với vật liệu giòn. Thiếu sót của thuyết này là không kể đến ứng suất chính σ2. 2 August 2015 Ngo Van Cuong-HCM University Of Industry 49
  50. 4.7. Các thuyết bền  Thuyết thứ 3 cho phép giải thích vì sao vật liệu bị nén đều theo tất cả các phương có thể chịu được những áp suất rất cao, vì trong trường hợp này thì σ1=σ3=-p ⇒ dù áp suất p có lớn tới đâu σtđ cũng luôn luôn bằng không. d) Thuyết bền thứ tư (thuyết bền thế năng biến đổi hình dáng)  Thuyết bền thế năng biến đổi hình dạng do Huybe đưa ra năm 1904. Thuyết này cho rằng: vật liệu bị phá hoại là do thế năng biến đổi hình dạng của phân tố ở trạng thái ứng 2 August 2015 Ngo Van Cuong-HCM University Of Industry 50
  51. 4.7. Các thuyết bền suất phức tạp đạt đến thế năng biến đổi hình dạng ở trạng thái ứng suất nguy hiểm của phân tố ở trạng thái ứng suất đơn.  Hai trạng thái ứng suất phức tạp và đơn sẽ có độ bền tương đương nếu thế năng riêng biến đổi hình dạng của chúng bằng nhau.  Điều kiện bền:  222     td 1231 21 32 3  k  Trong trường hợp trạng thái ứng suất phẳng đặc biệt: 2 August 2015 Ngo Van Cuong-HCM University Of Industry 51
  52. 4.7. Các thuyết bền  223 td  k Thuyết bền thứ tư phù hợp đối với vật liệu dẻo, nhưng đối với vật liệu giòn thì cũng không thích hợp. Mặt khác thuyết này vẫn chưa giải thích được sự phá hoại của vật liệu khi bị kéo đều theo 3 phương. e) Thuyết bền 5 - Thuyết bền Mohr  Thuyết bền Mo đưa ra lần đầu tiên vào năm 1882 và sau đó phát triển chi tiết vào năm 1990. Thuyết này cho rằng: vật liệu bị phá hoại 2 August 2015 Ngo Van Cuong-HCM University Of Industry 52
  53. 4.7. Các thuyết bền là do trạng thái ứng suất đang xét vượt quá trạng thái ứng suất giới hạn tương ứng trong họ vòng tròn ứng suất giới hạn.  Thuyết bền Mo dựa vào đường bao của họ vòng tròn ứng suất giới hạn để xác định trạng thái ứng suất giới hạn cho từng trường hợp của trạng thái ứng suất. Nếu làm nhiều lần thí nghiệm với các ứng suất chính khác nhau thì ta được một tập hợp các vòng tròn giới hạn 2 August 2015 Ngo Van Cuong-HCM University Of Industry 53
  54. 4.7. Các thuyết bền  Dựa vào kết quả thí nghiệm => Vẽ vòng tròn ứng suất giới hạn => Vẽ đường bao => Xác định  Điều kiện bền: 2 August 2015 Ngo Van Cuong-HCM University Of Industry 54
  55. 4.7. Các thuyết bền Ưu nhược điểm và phạm vi sử dụng 3 thuyết bền 2 August 2015 Ngo Van Cuong-HCM University Of Industry 55
  56. 4.8. Áp dụng các thuyết bền  Cho đến nay người ta đã xây dựng nhiều thuyết bền khác nhau, mỗi thuyết bền đề ra một quan điểm về nguyên nhân phá hoại của vật liệu. Trong thực tế tính toán, việc chọn thuyết bền nào là phụ thuộc vào loại vật liệu sử dụng và trạng thái ứng suất của điểm kiểm tra. Nếu là vật liệu dẻo ta dùng thuyết thứ ba hoặc thứ tư. Nếu là vật liệu giòn ta dùng thuyết thứ hai hoặc thứ năm (Mo). 2 August 2015 Ngo Van Cuong-HCM University Of Industry 56
  57.  Gần đây xuất hiện nhiều thuyết mới liên quan chủ yếu đến các loại vật liệu mới như chất dẻo, sợi thuỷ tinh, chất dẻo nhiều lớp,  Các nghiên cứu thực nghiệm và lý thuyết cho thấy rằng cấu trúc của tinh thể vật rắn biến dạng có ảnh hưởng lớn đến biến dạng và phá hỏng của vật liệu đó. Nếu bỏ qua ảnh hưởng đó thì kết quả tính toán theo các thuyết bền sẽ bị sai lệch. Do đó hiện nay, người ta đang tiếp tục nghiên cứu về các vấn đề này. 2 August 2015 Ngo Van Cuong-HCM University Of Industry 57
  58. Ví dụ  Kiểm tra bền của phân tố vật thể chịu các ứng 2 2 suất: x = -4kN/cm , y = -6 kN/cm , z = 3 2 2 kN/cm , xy= yx=2 kN/cm , zx = xz = yz = zy = 0. Cho biết [] = 12 kN/cm2. Giải 2  Nếu coi z = 3 kN/cm là một ứng suất chính của phân tố thì hai ứng suất chính còn lại: 2 August 2015 Ngo Van Cuong-HCM University Of Industry 58
  59. Ví dụ Như vậy: Theo thuyết bền thứ ba: Theo thuyết bền thứ tư: Như vậy phân tố đủ bền theo cả hai thuyết bền. 2 August 2015 Ngo Van Cuong-HCM University Of Industry 59
  60. Serious learning is the key to success. 2 August 2015 Ngo Van Cuong-HCM University Of Industry 60