Tam giác đồng dạng - Rèn luyện kĩ năng tính toán và chứng minh

pdf 33 trang Đức Chiến 03/01/2024 2310
Bạn đang xem 20 trang mẫu của tài liệu "Tam giác đồng dạng - Rèn luyện kĩ năng tính toán và chứng minh", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdftam_giac_dong_dang_ren_luyen_ki_nang_tinh_toan_va_chung_minh.pdf

Nội dung text: Tam giác đồng dạng - Rèn luyện kĩ năng tính toán và chứng minh

  1. HƯỚNG DẪN SỬ DỤNG SÁCH
  2. HƯỚNG DẪN SỬ DỤNG SÁCH Bạn đang cầm trờn tay cuốn sỏch tương tỏc được phỏt triển bởi Tiladođ. Cuốn sỏch này là phiờn bản in của sỏch điện tử tại Để cú thể sử dụng hiệu quả cuốn sỏch, bạn cần cú tài khoản sử dụng tại Tiladođ. Trong trường hợp bạn chưa cú tài khoản, bạn cần tạo tài khoản như sau: 1. Vào trang 2. Bấm vào nỳt "Đăng ký" ở gúc phải trờn màn hỡnh để hiển thị ra phiếu đăng ký. 3. Điền thụng tin của bạn vào phiếu đăng ký thành viờn hiện ra. Chỳ ý những chỗ cú dấu sao màu đỏ là bắt buộc. 4. Sau khi bấm "Đăng ký", bạn sẽ nhận được 1 email gửi đến hũm mail của bạn. Trong email đú, cú 1 đường dẫn xỏc nhận việc đăng ký. Bạn chỉ cần bấm vào đường dẫn đú là việc đăng ký hoàn tất. 5. Sau khi đăng ký xong, bạn cú thể đăng nhập vào hệ thống bất kỳ khi nào. Khi đó cú tài khoản, bạn cú thể kết hợp việc sử dụng sỏch điện tử với sỏch in cựng nhau. Sỏch bao gồm nhiều cõu hỏi, dưới mỗi cõu hỏi cú 1 đường dẫn tương ứng với cõu hỏi trờn phiờn bản điện tử như hỡnh ở dưới. Nhập đường dẫn vào trỡnh duyệt sẽ giỳp bạn kiểm tra đỏp ỏn hoặc xem lời giải chi tiết của bài tập. Nếu bạn sử dụng điện thoại, cú thể sử dụng QRCode đi kốm để tiện truy cập. Cảm ơn bạn đó sử dụng sản phẩm của Tiladođ Tiladođ
  3. RẩN LUYỆN KĨ NĂNG TÍNH TOÁN BÀI TẬP LIấN QUAN 1. Đoạn thẳng AB gấp 5 lần đoạn thẳng CD; đoạn thẳng A’B’ gấp 7 lần đoạn thẳng CD. a. Tớnh tỉ số của hai đoạn thẳng AB và A’B’. b. Cho biết đoạn thẳng MN = 505 cm và đoạn thẳng M’N’ = 707 cm. So sỏnh hai AB MN tỉ lệ và A ′ B ′ M ′ N ′ Xem lời giải tại: 2. Cho cỏc hỡnh vẽ. Tỡm độ dài của đoạn thẳng AN; QP, biết cỏc số trong hỡnh cú cựng đơn vị đo là cm. Xem lời giải tại: MA 1 3. Gọi M là điểm nằm trờn đoạn thẳng AB sao cho = . Tớnh cỏc tỉ số MB 2 AM MB ; ? AB AB Xem lời giải tại: 4. Cho điểm C thuộc đoạn thẳng AB.
  4. CA 2 a. Biết AB = 20 cm, = . Tớnh độ dài CA, CB. CB 3 CA m CA b. Biết = . Tớnh tỉ số ? AB n CB Xem lời giải tại: 5. Cho đoạn thẳng AB. Điểm C thuộc đoạn thẳng AB, điểm D thuộc tia đối của tia CA DA BA sao cho = = 2. Biết CD = 4 cm, tớnh độ dài AB? CB DB Xem lời giải tại: 6. Cho hỡnh thang ABCD (AB // CD). Một đường thẳng song song với hai đỏy, cắt cỏc cạnh bờn AD và BC theo thứ tự tại E và F. Tớnh FC, biết AE = 4 cm; ED = 2 cm; BF = 6 cm. Xem lời giải tại: BD 1 7. Cho ΔABC. Điểm D thuộc cạnh BC sao cho = . Điểm E thuộc đoạn thẳng BC 4 AK AD sao cho AE = 2ED. Gọi K là giao điểm của BE và AC. Tớnh tỉ số ? KC Xem lời giải tại: 8. Cho ΔABC, điểm D thuộc cạnh BC. Qua D kẻ DE // AC (E ∈ AB); DF // AB ( AE AF F AC). Tớnh: + ? ∈ AB AC Xem lời giải tại:
  5. 9. G là trọng tõm của ΔABC. Qua G vẽ GD // AB (D ∈ BC); GE // AC (E ∈ BC). BD a. Tớnh tỉ số ? BC b. Chứng minh: BD = DE = EC Xem lời giải tại: 10. Cho M là điểm bất kỡ thuộc miền trong của ΔABC. Tia AM cắt BC tại N. Dựng hỡnh bỡnh hành ADME (D ∈ AB; E ∈ AC). AD AE MN Chứng minh tổng: + + cú giỏ trị khụng đổi. AB AC AN Xem lời giải tại: 11. Tỡm cỏc cặp đường thẳng song song trong hỡnh và giải thớch vỡ sao chỳng song song. Xem lời giải tại: 12. Tớnh cỏc độ dài x, y trong hỡnh vẽ. a.
  6. b. Xem lời giải tại: 13. Tớnh độ dài x, y theo a trờn hỡnh vẽ, biết DM/ /EN/ /BC. Xem lời giải tại: 14. Cho ΔABC, điểm D trờn cạnh AB sao cho AD = 13,5 cm; DB = 4,5 cm. Tớnh tỉ số cỏc khoảng cỏch từ cỏc điểm D và B đến cạnh AC. Xem lời giải tại: 15. Cho ΔABC, đường cao AH. Đường thẳng d/ /BC, cắt cỏc cạnh AB, AC, AH theo thứ tự tại B’, C’, H’. AH ′ B ′ C ′ a. Chứng minh rằng: = . AH BC ′ 1 2 b. Áp dụng: Cho biết AH = AH và S = 67, 5 cm . Tớnh S ′ ′ ? 3 ΔABC ΔAB C
  7. Xem lời giải tại: 16. Cho ΔABC, BC = 15 cm. Trờn đường cao AH lấy cỏc điểm I, K sao cho AK = KI = IH. Qua I và K vẽ cỏc đường EF // MN // BC. (M, E ∈ AB; N, F ∈ AC) a. Tớnh độ dài cỏc đoạn thẳng MN; EF. 2 b. Tớnh SMNFE, biết SΔABC = 270 cm . Xem lời giải tại: 17. Cho hỡnh thang cõn ABCD (AB/ /CD). Hai đường chộo AC và BD cắt nhau tại O. Gọi M; N theo thứ tự là trung điểm của BD và AC. Biết MD = 3MO, đỏy lớn CD = 5,6 cm. a. Tớnh MN; AB? b. So sỏnh MN với nửa hiệu cỏc độ dài của CD và AB. Xem lời giải tại: 18. Cho hỡnh thang ABCD (AB // CD). Một đường thẳng song song với hai đỏy AM 1 cắt cỏc cạnh bờn AD, BC tại M, N sao cho = . MD 2 BN a. Tớnh tỉ số ? NC b. Cho AB = 8 cm, CD = 17 cm. Tớnh MN? Xem lời giải tại: 19. Cho ΔABC, Aˆ = 1200, AB = 3 cm, AC = 6 cm. Tớnh độ dài đường phõn giỏc AD (D ∈ BC). Xem lời giải tại: 20. Cho ΔABC cõn tại A. Cỏc đường phõn giỏc BD, CE (D ∈ AC, E ∈ AB). a. Chứng minh DE // BC.
  8. b. Tớnh độ dài AB, biết DE = 6 cm, BC = 15 cm. Xem lời giải tại: 21. Cho ΔABC, gọi I là trung điểm của AB, E là trung điểm của BI, D thuộc cạnh 1 BF EF AC sao cho CD = CA. Gọi F là giao điểm của BD và CE. Tớnh cỏc tỉ số ; . 3 FD FC Xem lời giải tại: 22. Cho tam giỏc ABC cú cỏc gúc B và C là gúc nhọn, đường phõn giỏc AD. Biết AD = AB = √5cm, BD = 2cm. Tớnh độ dài DC. Xem lời giải tại: 23. Cho ΔABC cú cỏc đường phõn giỏc AD, BE, CF (D ∈ BC, E ∈ AC, F ∈ AB). DB EC FA Tớnh . . ? DC EA FB Xem lời giải tại: 0 24. Cho ΔABC, Aˆ = 90 , đường phõn giỏc AD (D ∈ BC). Biết DB = 15 cm, DC = 20 cm. Tớnh AB, AC. Xem lời giải tại: 0 25. Cho ΔABC, Aˆ = 90 , AB = AC = 1 dm, đường phõn giỏc BD (D ∈ AC). Tớnh AD, DC. Xem lời giải tại:
  9. 26. Cho ΔABC cú AB = 12 cm, AC = 20 cm, BC = 28 cm. Kẻ đường phõn giỏc AD ^ của BAC (D ∈ BC). Qua D kẻ DE // AB (E ∈ AC). a. Tớnh BD, DC, DE? 2 b. Cho biết SΔABC = a cm . Tớnh SΔABD ; SΔADE ; SΔDCE ? Xem lời giải tại: 0 27. Cho ΔABC, Aˆ = 90 , AB = 15 cm, AC = 20 cm, đường cao AH (H ∈ BC). ^ ^ Tia phõn giỏc của HAB cắt HB tại D. Tia phõn giỏc của HAC cắt HC tại E. a. Tớnh AH. b. Tớnh DH, HE. Xem lời giải tại: 28. Cho ΔABC, AB = AC = 10 cm, BC = 12 cm. Gọi I là giao điểm cỏc đường phõn giỏc của ΔABC. Tớnh BI. Xem lời giải tại: 29. Cho ΔABC, Aˆ = 900, AB = 21 cm, AC = 28 cm. Đường phõn giỏc AD ( D ∈ BC), DE⊥AC (E ∈ AC). a. Tớnh BD, DC, DE. b. Tớnh SΔABD; SΔACD ? Xem lời giải tại: 30. Cho ΔABC, AB = AC = 15 cm, BC = 10 cm. Đường phõn giỏc BD (D ∈ AC) a. Tớnh AD, DC. b. Đường vuụng gúc với BD cắt đường thẳng AC tại E. Tớnh EC. Xem lời giải tại:
  10. 31. Cho ΔABC, cỏc đường phõn giỏc BD và CE (D ∈ AC, E ∈ AB). Biết AD 2 AE 5 = ; = . DC 3 EB 6 Tớnh cỏc cạnh của ΔABC, biết chu vi của ΔABC bằng 45 cm. Xem lời giải tại: 32. Cho ΔABC, AB = 12 cm, AC = 18 cm, đường phõn giỏc AD (D ∈ BC). Điểm I thuộc đoạn thẳng AD sao cho AI = 2ID. Gọi E là giao điểm của BI và AC. AE a. Tớnh tỉ số . EC b. Tớnh AE, EC. Xem lời giải tại: 33. Cho ΔABC (AB < AC). Trờn cạnh AC lấy điểm D sao cho CD = AB. Gọi M, N ^ ^ lần lượt là trung điểm của AD, BC. Tớnh CMN, biết BAC = 500. Xem lời giải tại: 34. Cho ΔABC cú: AB = 16,2 cm; BC = 24,3 cm; AC = 32,7 cm. Tớnh cỏc cạnh của ΔA ′ B ′ C ′ , biết ΔA ′ B ′ C ′ đồng dạng với ΔABC và: a. A’B’ lớn hơn cạnh AB là 10, 8 cm. b. A’B’ bộ hơn cạnh AB là 5,4 cm. Xem lời giải tại: 3 35. Cho ΔA ′ B ′ C ′ ΔABC theo tỉ số đồng dạng k = . ∼ 5 a. Tớnh tỉ số chu vi của hai tam giỏc đó cho. b. Cho hiệu chu vi của hai tam giỏc trờn là 40 dm, tớnh chu vi của mỗi tam giỏc.
  11. Xem lời giải tại: 36. Cho hỡnh thang cõn ABCD (AD/ /BC), AD = a, BC = b (a > b). Gọi K là trung điểm của AD, KB cắt AC tại M, KC cắt BD tại N. Tớnh độ dài MN? Xem lời giải tại: ^ ^ 37. Cho ΔABC, BC = a, AC = b, ACB = 1200. Tớnh độ dài phõn giỏc của ACB. Xem lời giải tại: 38. Cho hỡnh thang vuụng ABCD (Aˆ = Bˆ = 900), AD = a, BC = b (a > b), AB = c. Tớnh cỏc khoảng cỏch từ giao điểm cỏc đường chộo hỡnh thang đến đỏy AD và cạnh bờn AB. Xem lời giải tại: 2 39. Cho ΔABC ΔHIK theo tỉ số đồng dạng k = ∼ 5 a. Tớnh tỉ số chu vi của hai tam giỏc đó cho b. Tớnh chu vi ΔHIK biết chu vi ΔABC bằng 60 cm Xem lời giải tại:
  12. RẩN LUYỆN KĨ NĂNG CHỨNG MINH TRONG TAM GIÁC ĐỒNG DẠNG BÀI TẬP LIấN QUAN 40. Cho tứ giỏc ABCD cú AB = 3 cm, BC = 10 cm, CD = 12 cm, AD = 5 cm, đường chộo BD = 6 cm. Chứng minh: a. ΔABD ∼ ΔBDC b. Tứ giỏc ABCD là hỡnh thang. Xem lời giải tại: 41. Cho ΔABC, Aˆ = 900, AB = 24 cm, BC = 26 cm và ΔIMN, Iˆ = 900, IN = 25 cm, MN = 65 cm. Chứng minh: ΔABC ∼ ΔIMN Xem lời giải tại: ^ AB BC 42. Cho ΔABC, Aˆ = 900 và ΔA ′ B ′ C ′ , A ′ = 900. Biết = = 2. A ′ B ′ B ′ C ′ AC a. Tớnh = ? A ′ C ′ ′ ′ ′ b. Chứng minh: ΔABC ∼ ΔA B C Xem lời giải tại: 43. Cho ΔABC cú BC = 9 cm, AC = 6 cm, AB = 4 cm. Gọi ha, hb, hc là chiều cao tương ứng với cỏc cạnh BC, AC, AB. Chứng minh ΔABC đồng dạng với tam giỏc cú ba cạnh bằng ha, hb, hc.
  13. Xem lời giải tại: 44. Cho ΔABC cú ba đường trung tuyến cắt nhau tại O. Gọi P, Q, R, D, H, K theo thứ tự là trung điểm của cỏc đoạn thẳng OA, OB, OC, AB, AC, BC. a. Chứng minh ΔKHD ∼ ΔPQR, tỡm tỉ số đồng dạng. b. Tớnh chu vi ΔPQR, ΔABC, biết chu vi ΔKHD bằng 100 cm. Xem lời giải tại: 45. Cho điểm H nằm trong ΔABC. Gọi K, M, N theo thứ tự là trung điểm của cỏc đoạn thẳng AH, BH, CH. Gọi D, E, F theo thứ tự là trung điểm của cỏc đoạn thẳng KM, KN, MN. a. Chứng minh ΔFED ∼ ΔABC, tỡm tỉ số đồng dạng? b. Biết nửa chu vi của ΔABC là 12 cm. Tớnh chu vi ΔFED. Xem lời giải tại: 2 46. Cho ΔABC cú BC = a, AC = b, AB = c và a = bc. Gọi ha, hb, hc là chiều cao tương ứng với cỏc cạnh BC, AC, AB. Chứng minh ΔABC đồng dạng với tam giỏc cú ba cạnh bằng độ dài cỏc đường cao của ΔABC. Xem lời giải tại: ^ AB BC 47. Cho ΔABC, Aˆ = 900 và ΔA ′ B ′ C ′ , A ′ = 900. Biết = = k A ′ B ′ B ′ C ′ AC a. Tớnh A ′ C ′ ′ ′ ′ b. Chứng minh: ΔABC ∼ ΔA B C c. Tớnh tỉ số diện tớch của ΔABC và ΔA ′ B ′ C ′ . Xem lời giải tại:
  14. 48. Cho tứ giỏc ABCD cú: ^ ^ BAD = 900, CBD = 900, AB = 4 cm, BD = 6 cm, CD = 9 cm. a. Chứng minh ΔABD ∼ ΔBDC b. Tứ giỏc ABCD là hỡnh thang vuụng. Xem lời giải tại: Bˆ 49. Cho ΔABC, AB = 4 cm, BC = 5 cm, AC = 6 cm. Tớnh tỉ số . Cˆ Xem lời giải tại: 50. Cho hỡnh thoi ABCD cú Aˆ = 600. Qua C kẻ đường thẳng d cắt cỏc tia đối của cỏc tia BA, DA theo thứ tự ở E, F. Goi I là giao điểm của DE và BF. EB AD a. So sỏnh và . BA DF b. Chứng minh ΔEBD ∼ ΔBDF. ^ c. Tớnh BID = ?. Xem lời giải tại: 51. Cho hỡnh bỡnh hành ABCD, AC cắt BD tại O, AC = 2AB. Vẽ trung tuyến BE của ΔABO (E ∈ AO). Gọi M là trung điểm của BC. ^ ^ a. So sỏnh ABE và ACB. b. Chứng minh EM⊥BD. Xem lời giải tại: 52. Cho ΔABC. Đường thẳng d/ /BC cắt AB, AC lần lượt tại D, E sao cho DC2 = BC. DE. a. So sỏnh ΔDEC và ΔCDB.
  15. b. Nờu cỏch dựng DE. Xem lời giải tại: 53. Cho ΔABC và G là điểm thuộc miền trong tam giỏc, tia AG cắt BC tại K và tia CG cắt AB tại M. Biết rằng AG = 2GK; CG = 2GM. Chứng minh rằng G là trọng tõm của ΔABC Xem lời giải tại: 54. Cho gúc xOy cú tia phõn giỏc Ot. Trờn tia Ox lấy cỏc điểm A và C’ sao cho OA = 4cm; OC ′ = 9cm. Trờn tia Oy lấy cỏc điểm A’ và C sao cho OA ′ = 12cm; OC = 3cm. Trờn tia Ot lấy cỏc điểm B và B’ sao cho OB = 6cm; OB ′ = 18cm. ′ ′ a. Chứng minh rằng ΔOAB ∼ ΔOA B AB BC AC b. Tớnh cỏc tỉ số ; ; A ′ B ′ B ′ C ′ A ′ C ′ Xem lời giải tại: 55. Trờn một cạnh của một gúc cú đỉnh là O, đặt cỏc đoạn thẳng OA = 5cm; OB = 16cm. Trờn cạnh thứ hai của gúc đú, đặt cỏc đoạn thẳng OC = 8cm; OD = 10cm. a. Chứng minh rằng ΔOCB ∼ ΔOAD. b. Gọi giao điểm của cỏc cạnh AD và BC là I. Chứng minh rằng AI. ID = IB. IC Xem lời giải tại: 56. Qua điểm O tựy ý ở trong tam giỏc ABC kẻ đường thẳng song song với AB, cắt AC và BC ở D và E, đường thẳng song song với AC cắt AB và BC tại F và K, đường thẳng song song với BC cắt AB và AC ở M và N. AF BE CN Chứng minh rằng: + + = 1. AB BC CA
  16. Xem lời giải tại: 57. Cho tam giỏc nhọn ABC, cỏc đường cao BI và CK, điểm M thuộc cạnh BC. Gọi D và E theo thứ tự là hỡnh chiếu của M trờn AB và AC. Gọi D' là hỡnh chiếu của D trờn AC, E' là hỡnh chiếu của E trờn AB, H là giao điểm của DD' và EE'. Chứng minh rằng ba điểm H, K ,I thẳng hàng. Xem lời giải tại: 58. Cho tam giỏc ABC. Qua điểm O thuộc miền trong tam giỏc kẻ cỏc đường thẳng DE, FH, MK tương ứng song song với AB, BC, CA (H, K thuộc AB; M, E thuộc BC; F, D thuộc AC). Gọi A' là giao điểm của AO với BC, B' là giao điểm của BO với AC, C' là giao điểm của CO với AB. Chứng minh rằng: FH MK DE + + = 2. BC AC AB Xem lời giải tại: 59. Cho tam giỏc ABC vuụng tại A, AB = 3cm, AC = 4cm. Lấy điểm D thuộc cạnh ^ AC, điểm E thuộc cạnh AB sao cho ADE = Bˆ . Gọi G, H theo thứ tự là hỡnh chiếu của E, D trờn BC. Tớnh tổng DE + EG + DH. Xem lời giải tại: 60. Cỏc đỏy của một hỡnh thang là a và b (a > b). Hóy xỏc định độ dài đoạn thẳng song song với cạnh đỏy của hỡnh thang và chia hỡnh thang thành hai phần cú diện tớch bằng nhau. Xem lời giải tại: 61. Giả sử AC là đường chộo lớn nhất trong hỡnh bỡnh hành ABCD. Từ C kẻ CE vuụng gúc với AB (E thuộc đường thẳng AB) và CF vuụng gúc với AD (F thuộc
  17. đường thẳng AD). Chứng minh rằng: AB. AE + AD. AF = AC2 Xem lời giải tại: 62. Hỡnh thang ABCD (AB//CD) cú ^ ^ AB = 2, 5cm; AD = 3, 5cm; BD = 5cm; DAB = DBC a. Chứng minh rằng ΔADB ∼ ΔBCD b. Tớnh độ dài cỏc cạnh BC, CD Xem lời giải tại: 63. Cho ΔABC trờn cạnh AB lấy điểm D, trờn cạnh AC lấy điểm E sao cho ^ ^ ADE = ACB. Chứng minh rằng: a. ΔADE ∼ ΔACB b. AD. AB = AE. AC Xem lời giải tại: 0 64. Cho ΔABC cú Aˆ = 90 , dựng AH⊥BC (H ∈ BC). Đường phõn giỏc BE cắt AH tại F. FH EA Chứng minh rằng = . FA EC Xem lời giải tại: 65. Cho hỡnh thang ABCD, (AB//CD). Gọi O là giao điểm của hai đường chộo AC và BD. a. Chứng minh rằng: OA. OD = OB. OC b. Đường thẳng qua O vuụng gúc với AB và CD theo thứ tự tại H và K. Chứng OH AB minh rằng = OK CD
  18. Xem lời giải tại: 66. Cho ΔABC cõn tại A, M là trung điểm của BC. Trờn cạnh AB lấy điểm D, trờn ^ cạnh AC lấy điểm E sao cho DM là tia phõn giỏc của BDE. Chứng minh rằng BC2 BD. CE = 4 Xem lời giải tại: ^ ^ 67. Cho ΔABC và ΔA ′ B ′ C ′ biết Aˆ + A ′ = 1800; Bˆ = B ′ . Chứng minh rằng AB. A ′ B ′ + AC. A ′ C ′ = BC. B ′ C ′ Xem lời giải tại: 1 1 1 68. Cho ΔABC cú Aˆ = 2Bˆ = 4Cˆ . Chứng minh rằng: = + . AB BC AC Xem lời giải tại: 69. Cho ΔABC cú AB = c; BC = a; AC = b; Aˆ = 2Bˆ . Chứng minh rằng a2 = b2 + bc Xem lời giải tại: 70. Cho hỡnh vuụng ABCD. Trờn cỏc cạnh BA, BC đặt BP = BQ vẽ BH⊥CP. Chứng minh rằng DH⊥HQ Xem lời giải tại:
  19. 71. Cho ΔABC đều, gọi M là trung điểm của BC. Lấy điểm P trờn cạnh AB và điểm ^ Q trờn cạnh AC sao cho PMQ = 600. Chứng minh: a. ΔPBM ∼ ΔMCQ b. ΔMBP ∼ ΔQMP SMPQ PQ c. = SABC 2BC Xem lời giải tại: 72. Cho ΔABC đều, O là trọng tõm của tam giỏc và điểm M ∈ BC, M khụng trựng với trung điểm của BC. Kẻ MP và MQ lần lượt vuụng gúc với AB và AC, cỏc đường vuụng gúc này lần lượt cắt OB và OC taị I và K. a. Chứng minh rằng tứ giỏc MIOK là hỡnh bỡnh hành b. Gọi R là giao điểm của PQ và OM. Chứng minh R là trung điểm của PQ. Xem lời giải tại: 0 2 73. Cho ΔABC cú Aˆ = 90 ; AH⊥BC (H ∈ BC). Chứng minh AH = BH. CH. Xem lời giải tại: 74. Cho ΔABH; Hˆ = 900 cú AB = 20 cm, BH = 12 cm. Trờn tia đối của tia HB lấy AC 5 điểm C sao cho = . AH 3 a. Chứng minh: ΔABH ∼ ΔCAH. ^ b. Tớnh BAC? Xem lời giải tại: 0 75. Cho ΔABC cú Aˆ = 90 ; AH⊥BC (H ∈ BC), AH = 8 cm, BC = 20 cm. Gọi D là hỡnh chiếu của H trờn AC, E là hỡnh chiếu của H trờn AB. a. Chứng minh: ΔADE ∼ ΔABC.
  20. b. Tớnh SΔADE ? Xem lời giải tại: 0 76. ΔABC cú Cˆ = 90 ; CH⊥AB (H ∈ AB). Trờn CH lấy điểm E, qua B kẻ BD⊥AE (D ∈ AE). Chứng minh rằng: a. AD. AE + BA. BH = AB2 b. AD. AE − HA. HB = AH2 Xem lời giải tại: 77. Cho hỡnh bỡnh hành ABCD cú AC là đường chộo lớn. Gọi E và F theo thứ tự là hỡnh chiếu của C trờn AB và AD. Gọi H là hỡnh hỡnh chiếu của D trờn AC. Chứng minh rằng: a. AD. AF = AC. AH b. AD. AF + AB. AE = AC2 Xem lời giải tại: 78. Cho ΔABC, ba trung tuyến AK, BN, CM cắt nhau tại O. Gọi A1; A2; A3 là ba điểm lần lượt trờn AK, BN, CM sao cho 1 1 1 AA = A K; BB = B N; CC = C M. 1 3 1 1 3 1 1 3 1 Tớnh S biết S = 128 cm2. ΔA1B1C1 ΔABC Xem lời giải tại: 0 0 79. Cho ΔABC cú Aˆ = 90 ; Cˆ = 30 và đường phõn giỏc BD (D ∈ AC). AD a. Tớnh tỉ số CD b. Cho biết độ dài AB = 12, 5cm, tớnh chu vi của ΔABC c. Gọi M là trung điểm của BC, chứng minh rằng ΔADB = ΔMDC
  21. Xem lời giải tại: 80. Cho ΔABC vuụng tại A, đường cao AH, gọi P là trung điểm của BH, Q là trung điểm của AH. Chứng minh rằng: a. ΔABP ∼ ΔCAQ b. AP⊥CQ Xem lời giải tại: 81. Cho ΔABC, đường cao AH, kẻ HI⊥AB; HK⊥AC. Chứng minh rằng: a. AH2 = AI. AB b. ΔAIK ∼ ΔACB ^ EB 2 BI c. Đường phõn giỏc của AHB cắt AB tại E. Biết = . Tớnh AB 5 AI Xem lời giải tại: 82. Cho hỡnh vuụng ABCD. Trờn cạnh AB lấy điểm M, kẻ BH⊥CM, nối DH, vẽ HN⊥DH(N ∈ BC). Chứng minh rằng: a. ΔDHC ∼ ΔNHB b. ΔMHB ∼ ΔBHC c. NB = MB Xem lời giải tại: 83. Cho hỡnh chữ nhật ABCD cú AD = 6cm; AB = 8cm và hai đường chộo cắt nhau tại O. Qua D kẻ đường thẳng d⊥DB , d cắt BC tại E. a. Chứng minh rằng: ΔBDE ∼ ΔDCE 2 b. Kẻ CH⊥DE tại H, chứng minh DC = CH. DB c. Gọi K là giao điểm của OE và HC. Chứng minh K là trung điểm của HC. SEHC d. Tớnh tỷ số SEDB
  22. Xem lời giải tại: 84. Cho ΔABC vuụng tại A cú AH là đường cao, gọi D và E lần lượt là hỡnh chiếu vuụng gúc của H lờn AB, AC. a. Chứng minh rằng ΔAED ∼ ΔABC b. Giả sử SABC = 2SADHE . Chứng minh rằng ΔABC vuụng cõn tại A. Xem lời giải tại: 85. Cho hỡnh thang ABCD cú (AB//CD), AB = m; CD = n(n > m), cỏc điểm P, Q lần lượt trờn cỏc cạnh AD, BC sao cho PQ/ /AB/ /CD; SABQP = SPQCD. Chứng m2 + n2 minh rằng: PQ2 = 2 Xem lời giải tại: 86. Cho ΔABC cõn tại đỉnh A và H là trung điểm của cạnh BC. Gọi I là hỡnh chiếu vuụng gúc của H lờn cạnh AC và O là trung điểm của HI. Chứng minh rằng ΔBIC ∼ ΔAOH. Xem lời giải tại:
  23. BÀI TẬP TỔNG HỢP BÀI TẬP LIấN QUAN 87. Cho tứ giỏc ABCD cú hai gúc vuụng tại đỉnh A và C, hai đường chộo AC và BD ^ ^ cắt nhau tại O và BAC = BDC. Chứng minh rằng: a. ΔABO ∼ ΔDCO b. ΔBCO ∼ ΔADO Xem lời giải tại: 88. Cho hỡnh chữ nhật ABCD, cú AB = 12cm, BC = 9cm. Gọi H là chõn đường vuụng gúc kẻ từ A xuống BD. a. Chứng minh rằng ΔAHB ∼ ΔBCD b. Tớnh độ dài đoạn thẳng AH c. Tớnh diện tớch ΔAHB Xem lời giải tại: ^ ^ 89. Tứ giỏc ABCD cú hai đường chộo AC và BD cắt nhau tại O, ABD = ACD. Gọi E là giao điểm của hai đường thẳng AD và BC. Chứng minh rằng: a. ΔAOB ∼ ΔDOC b. ΔAOD ∼ ΔBOC c. EA. ED = EB. EC Xem lời giải tại: 90. Cho ΔABC vuụng tại A, AB = 15cm; AC = 20cm đường phõn giỏc BD. a. Tớnh độ dài AD b. Gọi H là hỡnh chiếu của A trờn BC, tớnh độ dài HA, HB. c. I là giao của AH và BD. Chứng minh rằng ΔAID cõn.
  24. Xem lời giải tại: 91. Cho ΔABC vuụng tại A, AB = 36 cm; AC = 48 cm. Đường phõn giỏc AK. Tia phõn giỏc của Bˆ cắt AK ở I, qua I kẻ đường thẳng song song với BC, cắt AB và AC theo thứ tự ở D và E. a. Tớnh độ dài BK AI b. Tớnh tỉ số AK c. Tớnh độ dài DE. Xem lời giải tại: 92. Cho ΔABC vuụng tại A, AB = a; AC = 3a, trờn cạnh AC lấy cỏc điểm DE sao cho AD = DE = EC. DB DC a. Tớnh cỏc tỉ số ; DE DB b. Chứng minh rằng ΔBDE ∼ ΔCDB ^ ^ c. Tớnh tổng AEB + ACB d. Tớnh chu vi ΔBDE Xem lời giải tại: 93. Cho ΔABC, cỏc đường trung tuyến BD và CE cắt nhau tại G, qua điểm O thuộc cạnh BC, vẽ OM // CE, ON // BD (M ∈ AB; N ∈ AC), MN cắt BD, CE theo thứ tự ở I, K. MH a. Gọi H là giao điểm của OM và BD. Tớnh tỷ số MO 1 b. Chứng minh rằng MI = MN 3 c. Chứng minh rằng MI = IK = KN Xem lời giải tại:
  25. 94. Cho ΔABC, cú trực tõm H, gọi M và N theo thứ tự là trung điểm của BC, AC. Gọi O là giao điểm của cỏc đường trung trực của ΔABC. a. Chứng minh rằng ΔOMN ∼ ΔHAB OM b. Tớnh tỉ số AH c. Gọi G là trọng tõm của ΔABC. Chứng minh rằng ΔHAG ∼ ΔOMG d. Chứng minh ba điểm H, G, O thẳng hàng và GH = 2GO Xem lời giải tại: 95. Cho ΔABC cõn tại A, vẽ cỏc đường cao BH, CK (H ∈ AC; K ∈ AB) a. Chứng minh BK = CH b. Chứng minh KH // BC c. Biết BC = a; AB = AC = b. Tớnh độ dài đoạn thẳng HK. Xem lời giải tại: 96. Cho ΔABC vuụng tại A, đường cao AH, AB = 15cm; AC = 20cm. a. Chứng minh rằng CA2 = CH. CB ^ b. Kẻ AD là tia phõn giỏc của BAC(D ∈ BC). Tớnh HD. c. Trờn tia đối của tia AC lấy điểm I. Kẻ AK⊥BI tại K. Chứng minh rằng ΔBHK ∼ ΔBIC d. Cho AI = 8cm. Tớnh diện tớch ΔBHK. Xem lời giải tại: 97. Cho ΔABC vuụng tại A, (AB < AC) và trung tuyến AD, kẻ đường thẳng vuụng gúc với AD tại D lần lượt cắt AC tại E và AB tại F. a. Chứng minh ΔDCE ∼ ΔDFB b. Chứng minh AE. AC = AB. AF SABC AD 2 c. Đường cao AH của ΔABC cắt EF tại I. Chứng minh rằng = SAEF ( AI )
  26. Xem lời giải tại: 98. Cho hỡnh chữ nhật ABCD cú AB > AD và AD = 5cm. Trờn DC lấy điểm M sao ^ cho DM = 2cm. Biết AMB = 900 a. Chứng minh ΔDAM ∼ ΔCMB. Tớnh độ dài MC. ^ b. Tia phõn giỏc của AMB cắt AB tại E. Kẻ EK⊥AB(K ∈ MB). Chứng minh rằng EA=EK. c. Tia EK cắt AM tại H, tia AK cắt BH tại N. Chứng minh MN là tia phõn giỏc gúc ^ BMH Xem lời giải tại: 99. Cho ΔABC vuụng tại A (AB AC) kẻ đường cao AH.
  27. AB2 AC2 a. Chứng minh rằng: = BH CH ^ b. Kẻ AD là tia phõn giỏc của BAH(D ∈ BH). Chứng minh ΔACD cõn và DH. DC = BD. HC 2 2 c. Tớnh độ dài AH trong trường hợp SABH = 15, 36(cm ); SACH = 8, 64(cm ) d. Gọi M là trung điểm của AB, E là giao điểm của hai đường thẳng MD và AH. Chứng minh rằng: CE/ /AD. Xem lời giải tại: 102. Cho tứ giỏc ABCD, điểm E ∈ AB, qua E kẻ đường thẳng song song với AC, cắt BC ở F. Qua F kẻ đường thẳng song song với BD cắt CD tại G. Qua G kẻ đường thẳng song song với AC cắt AD ở H. a. Tứ giỏc EFGH là hỡnh gỡ? b. Để EFGH là hỡnh chữ nhật thỡ tứ giỏc ABCD phải cú điều kiện gỡ? c. Nếu EFGH là hỡnh chữ nhật thỡ tớnh diện tớch cỏc tứ giỏc ABCD, EFGH biết BE 1 AC = 45(cm); BD = 30(cm); = BA 2 Xem lời giải tại: 103. Hỡnh thang ABCD cú AB // CD, đường cao bằng 12cm, AC⊥BD, BD = 15(cm). a. Qua B kẻ đường thẳng song song với AC, cắt DC ở E. Tớnh độ dài DE b. Tớnh diện tớch hỡnh thang ABCD. Xem lời giải tại: 104. Cho ΔABC vuụng tại A (AB < AC), phõn giỏc BD. Trờn tia đối của tia AB lấy ^ ^ điểm F sao cho ACF = ABD . Gọi E là giao điểm của CF và BD. a. Chứng minh: ΔBEF ∼ ΔCAF b. Chứng minh: ΔBCF cõn c. Đường thẳng qua E, song song với AC cắt BF tại K.
  28. Chứng minh: AC2 = 4KF. BK Xem lời giải tại: 105. Cho ΔABC nhọn, cỏc đường cao BD và CE cắt nhau ở H. Gọi K là hỡnh chiếu của H lờn BC. Chứng minh rằng: a. BH. BD = BK. BC b. CH. CE = CK. CB c. BH. BD + CH. CE = BC2 d. Chứng minh rằng ba điểm A, H, K thẳng hàng. Xem lời giải tại: 106. Cho hỡnh bỡnh hành ABCD cú (Aˆ < Bˆ ). Gọi E là hỡnh chiếu của C trờn AB, K là hỡnh chiếu của C trờn AD, H là hỡnh chiếu của B trờn AC. Chứng minh rằng: a. AB. AE = AC. AH b. BC. AK = AC. HC c. AB. AE + AD. AK = AC2 Xem lời giải tại: 107. Cho ΔABC vuụng tại A, đường cao AH, BC = 20(cm); AH = 8(cm). Gọi D là hỡnh chiếu của H trờn AC, E là hỡnh chiếu của H trờn AB. a. Tứ giỏc ADHE là hỡnh gỡ? b. Chứng minh rằng ΔADE ∼ ΔABC c. Tớnh diện tớch ΔADE. Xem lời giải tại: 108. Cho ΔABC cú (AB < AC). Đường phõn giỏc AD. Trờn cạnh AC lấy điểm E sao ^ ^ cho CDE = BAC = 760. a. Chứng minh rằng ΔCDE ∼ ΔCAB.
  29. ^ b. Chứng minh rằng ΔDBE cõn, tớnh số đo DEB. Xem lời giải tại: 109. Cho ΔABC vuụng tại A và cú đường cao AH. a. Chứng minh rằng: ΔABC ∼ ΔHBA ∼ ΔHAC b. Chứng minh rằng: AB2 = BH. BC, AC2 = CH. BC 2 c. Biết AB=3, AC=4, SHAC = 32cm . Tớnh diện tớch của ΔHBA Xem lời giải tại: 110. Cho ΔABC và một điểm D trờn cạnh AB. Đường thẳng đi qua D và song song với BC cắt AC tại E và cắt đường thẳng qua C song song với AB tại G. Nối BG cắt AC tại H; qua H kẻ đường thẳng song song với AB cắt BC tại I. Chứng minh rằng: a. DA. EG = DB. DE b. HC2 = HE. HA 1 1 1 c. = + HI BA CG Xem lời giải tại: 111. Cho hỡnh vuụng ABCD và một điểm E bất kỳ trờn cạnh BC. Kẻ tia Ax vuụng gúc với AE cắt CD tại F. Kẻ trung tuyến AI của ΔAEF và kộo dài cắt CD tại K. Qua E kẻ đường thẳng song song với AB cắt AI tại G. Chứng minh rằng: a. AE = AF b. Tứ giỏc EGFK là hỡnh thoi. c. ΔFIK ∼ ΔFCE d. EK = BE + DK. Khi E chuyển động trờn BC thỡ chu vi ΔECK khụng đổi. Xem lời giải tại: 112. Cho ΔABC cú cỏc đường cao BK và CI cắt nhau tại H. Cỏc đường thẳng kẻ từ B vuụng gúc với AB và kẻ từ C vuụng gúc với AC cắt nhau tại D. Chứng minh
  30. rằng: a. BHCD là hỡnh bỡnh hành. b. AI.AB = AK.AC c. ΔAIK và ΔACB đồng dạng. d. ΔABC cần cú thờm điều kiện gỡ để đường thẳng DH đi qua A. Khi đú tứ giỏc BHCD là hỡnh gỡ? Xem lời giải tại: 113. Cho tứ giỏc ABCD cú AB = 4cm; BC = 20cm; CD = 25cm; DA = 8cm, đường chộo BD = 10cm. a. Cỏc tam giỏc ABD và BDC cú đồng dạng với nhau khụng ? Vỡ sao ? b. Chứng minh tứ giỏc ABCD là hỡnh thang. c. Tớnh diện tớch tứ giỏc ABCD Xem lời giải tại: 114. Cho hỡnh bỡnh hành ABCD cú đường chộo lớn là AC. Từ C hạ cỏc đường vuụng gúc CE và CF lần lượt xuống cỏc tia AB, AD. Chứng minh rằng AD. AF + AB. AE = AC2 Xem lời giải tại: 115. Cho ΔABC vuụng tại A, cú AB = 9cm, AC = 12cm. Tia phõn giỏc gúc A cắt BC tại D, từ D kẻ DE ⊥ AC (E ∈ AC) a. Tớnh độ dài BC b. Tớnh độ dài BD và CD c. Chứng minh: ΔABC ∼ ΔEDC SABD d. Tớnh DE. Tớnh tỉ số SADC Xem lời giải tại:
  31. ^ 116. Cho hỡnh bỡnh hành ABCD cú BAD nhọn. Kẻ BH, CM, CN, DI lần lượt vuụng gúc với AC, AB, AD và AC. a. Chứng minh rằng: AH = CI b. Tứ giỏc BIDH là hỡnh gỡ? c. Chứng minh rằng: AB.CM = CN.AD d. Chứng minh rằng: AD. AN + AM. AB = AC2 Xem lời giải tại: 117. Cho hỡnh thang vuụng ABCD cú AB // CD (Aˆ = Dˆ = 900), AB = 2cm; AD = CD = 8cm. Gọi O là trung điểm của AD. a. Tớnh BC ^ b. Chứng minh: BOC = 900 c. ΔAOB ∼ ΔDCO; ΔABO ∼ ΔOBC Xem lời giải tại: ^ 118. Cho ΔABC đều, qua trung điểm O của BC vẽ xOy = 600. Cỏc tia Ox, Oy cắt cỏc cạnh AB, AC tương ứng tại M và N. Chứng minh rằng: a. ΔBOM ∼ ΔCNO b. 4BM. CN = BC2 ^ c. ΔBOM ∼ ΔONM, OM là phõn giỏc của BMN. d. ON2 = CN. NM Xem lời giải tại: 119. Cho ΔABC(AB < AC), đường phõn giỏc AD. Qua điểm M là trung điểm của BC kẻ đường thẳng song song với AD, cắt AB và AC lần lượt tại E và K. Chứng minh rằng: a. AE = AK b. BE = CK
  32. c. CA. MK = BE. AD Xem lời giải tại: 120. Cho ΔABC cú AB = 15cm; AC = 21cm. Trờn cạnh AB lấy điểm E sao cho AE = 7cm. Trờn cạnh AC lấy điểm D sao cho AD = 5cm. Chứng minh rằng: a. ΔABD ∼ ΔACE b. ΔIBE ∼ ΔICD. Trong đú I là giao điểm của BD và CE c. IB. ID = IC. IE Xem lời giải tại: 121. Cho ΔABC cõn tại A, M là trung điểm của BC. Trờn cạnh AB lấy điểm D, trờn ^ cạnh AC lấy điểm E sao cho DM là tia phõn giỏc của gúc BDE. Chứng minh rằng: ^ a. EM là tia phõn giỏc của CED b. ΔBDM ∼ ΔCME c. BD. CE = MB2 Xem lời giải tại: 122. Cho hỡnh bỡnh hành ABCD và điểm M nằm trong hỡnh hỡnh bỡnh hành. Giả ^ ^ ^ ^ sử MAB = MCB. Chứng minh rằng MDC = MBC. Xem lời giải tại: ^ ^ ^ ^ 123. Cho tứ giỏc ABCD trong đú cú ABC = ADC; ABC + BCD < 1800. Gọi E là giao điểm của hai đường thẳng AB, CD. Chứng minh rằng AC2 = CD. CE − AB. AE Xem lời giải tại:
  33. 124. Cho ΔABC, một đường thẳng d khụng đi qua cỏc đỉnh của tam giỏc, cắt cỏc đường thẳng BC, AC, AB thứ tự ở A’, B’, C’. Chứng minh rằng B ′ A A ′ C C ′ B . . = 1 B ′ C A ′ B C ′ A Xem lời giải tại: 125. Cho ΔABC, cỏc điểm A’, B’, C’ theo thứ tự thuộc cỏc cạnh BC, AC, AB sao cho B ′ A A ′ C C ′ B AA’, BB’, CC’ đồng quy ở O. Chứng minh rằng: . . = 1 B ′ C A ′ B C ′ A Xem lời giải tại: 126. Cho ΔABC, M là điểm bất kỳ trong tam giỏc, cỏc đường thẳng AM, BM, CM theo thứ tự cắt cỏc cạnh BC, CA, AB tại N, P, Q. Gọi R là giao điểm của PQ và BC. NB RB Chứng minh rằng = . NC RC Xem lời giải tại: