Sinh học - Chương 4: Hệ sinh thái

pdf 54 trang vanle 4290
Bạn đang xem 20 trang mẫu của tài liệu "Sinh học - Chương 4: Hệ sinh thái", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfsinh_hoc_chuong_4_he_sinh_thai.pdf

Nội dung text: Sinh học - Chương 4: Hệ sinh thái

  1. Chương 4 HỆ SINH THÁI Hệ sinh thái cũng như những đơn vị chức năng trong sinh giới, các hoạt động của nó nói riêng hay toàn bộ sinh quyển nói chung làm cho thế giới ngày nay ngày càng phát triển và trở nên ổn định vững chắc. Mọi cá thể, mọi quần thể và quần xã sinh vật, những thành viên sống cấu trúc nên hệ cũng được thừa hưỡng những thành quả đó để phát triển và tiến hoá không ngừng. Con người, đương nhiên cũng là một trong những thành viên của hệ sinh thái. I. Định nghĩa. Hệ sinh thái là tổ hợp của một quần xã sinh vật với môi trường vật lý mà quần xã đó tồn tại, trong đó các sinh vật tương tác với nhau và với môi trường để tạo nên chu trình vật chất (chu trình sinh-địa-hoá) và sự chuyển hóa của năng lượng. Ví dụ: Ao, hồ, một khu rừng, một con sông, thậm chí một vùng biển là những hệ sinh thái điển hình. Hệ sinh thái lại trở thành một bộ phận cấu trúc của một hệ sinh thái duy nhất toàn cầu hay còn gọi là sinh quyển (Biosphere). Thuật ngữ “Hệ sinh thái” (Ecosystem) được A. Tansley nêu ra vào năm 1935 và trở thành phổ biến, được sử dụng rộng rãi nhất vì nó không chỉ bao hàm các hệ sinh thái tự nhiên mà cả các hệ sinh thái nhân tạo, kể cả con tàu vũ trụ. Đương nhiên, tàu vũ trụ là một hệ thống kín, đang hư- ớng đến trạng thái mở khi con người tạo ra trong đó quá trình tự sản xuất và tiêu thụ nhờ tiếp nhận nguồn năng lượng và vật chất từ bên ngoài. Thuật ngữ hệ sinh thái của A. Tansley còn chỉ ra nhũng hệ cực bé (Microecosystem), đến các hệ lớn như một khu rừng, cánh đồng rêu (Tundra), biển, đại dương và hệ cực lớn như sinh quyển. Hệ sinh thái luôn là một hệ động lực hở và tự điều chỉnh, bởi vì trong quá trình tồn tại và phát triển, hệ phải tiếp nhận cả nguồn vật chất và năng lượng từ môi trường. Do là một hệ động lực cho nên hoạt động của hệ tuân theo các định luật thứ nhất và thứ hai của nhiệt động học. Định luật I cho rằng: năng lượng không tự sinh ra và cũng không tự mất đi mà chỉ chuyển từ dạng này sang dạng khác, còn định luật thứ II có thể phát biểu dưới nhiều cách, song trong sinh thái học cho rằng: năng lượng khi chuyển từ bậc dinh dưỡng này sang bậc dinh dưỡng khác, hiệu suất sử dụng luôn nhỏ hơn 100%.
  2. Bản thân hệ sinh thái hoàn chỉnh và toàn vẹn như một cơ thể, cho nên tồn tại trong tự nhiên, hệ cũng có một giới hạn sinh thái xác định. Trong giới hạn đó, khi chịu một tác động vừa phải từ bên ngoài, hệ sẽ phản ứng lại bằng cách sắp xếp lại các mối quan hệ trong nội bộ và toàn thể hệ thống phù hợp với môi trường thông qua những “mối liên hệ ngược” để duy trì sự ổn định của mình trong điều kiện môi trường biến động. Các hệ sinh thái, được đặc trưng bởi đặc điểm cấu trúc và sự sắp xếp các chức năng hoạt động của mình một cách xác định. Cấu trúc của hệ phụ thuộc vào đặc tính phân bố trong không gian giữa các thành viên sống và không sống, vào đặc tính chung của môi trường vật lý cũng như sự biến đổi của các gradient thuộc các điều kiện sống (như nhiệt độ, độ ẩm, ánh sáng, độ cao ) theo chiều thẳng đứng và theo chiều nằm ngang. Tổ chức các hoạt động chức năng của hệ được thiết lập phù hợp với các quá trình mà chúng đảm bảo cho vật chất được quay vòng và năng lượng được biến đổi. Do hoạt động của hệ trước hết là của quần xã sinh vật, các nguyên tố hoá học di chuyển không ngừng dưới dạng các chu trình để tạo nên các hợp chất hữu cơ từ các chất khoáng và nước, còn năng lượng từ dạng nguyên khai (quang năng - ánh sáng Mặt Trời) được chuyển thành dạng năng lượng hóa học (hoá năng) chứa trong cơ thể thực vật, động vật thông qua các quá trình quang hợp (ở thực vật) và đồng hóa (ở động vật) rồi chuyển đổi thành nhiệt thông qua quá trình hô hấp của chúng. II. Cấu trúc của hệ sinh thái Một hệ sinh thái điển hình được cấu trúc bởi các thành phần cơ bản sau đây: - Sinh vật sản xuất (Producer - P) - Sinh vật tiêu thụ (Consumer - C) - Sinh vật phân hủy (Decomposer - D) - Các chất vô cơ (CO2, O2 , H2O, CaCO3 ) . - Các chất hữu cơ (protein, lipid, glucid, vitamin, enzym, hoocmon, ) - Các yếu tố khí hậu (nhiệt độ, ánh sáng, độ ẩm, lượng mưa ). Thực chất, 3 thành phần đầu chính là quần xã sinh vật, còn 3 thành phần sau là môi trường vật lý mà quần xã đó tồn tại và phát triển. + Sinh vật sản xuất (Producer - P) là những sinh vật tự dưỡng (autotrophy), gồm các loài thực vật có màu xanh và một số nấm, vi khuẩn có khả năng quang hợp hoặc hóa tổng hợp. + Sinh vật tiêu thụ (Consumer - C) là những sinh vật dị dưỡng (heterotrophy) bao gồm tất cả các loài động vật và những vi sinh vật không có khả năng quang hợp và hóa tổng hợp, nói một cách khác, chúng tồn tại được là dựa vào nguồn thức ăn ban đầu do các sinh vật tự dưỡng tạo ra. Tuỳ theo đặc điểm tiêu thụ của chúng, được chia ra: - Sinh vật tiêu thụ bậc 1 (C1): bao gồm những loài động vật ăn thực vật. - Sinh vật tiêu thụ bậc 2 (C 2): Bao gồm sinh vật ăn thịt, sử dụng sinh vật tiêu thụ bậc 1 làm thức ăn. - Sinh vật tiêu thụ bậc 3 và bậc 4 (C3 và C4) có thể là sinh vật ăn thịt, sử dụng sinh vật tiêu thụ bậc 2 làm thức ăn. Cũng có thể là ký sinh trùng sống ký sinh trên sinh vật tiêu thụ bậc1 hoặc bậc 2 hoặc động vật ăn xác chết. + Sinh vật phân hủy (Decomposer - D) là tất cả các vi sinh vật dị dưỡng, sống hoại sinh (saprophy). Từ bản chất là sinh vật dị dưỡng nên các vi sinh vật tham gia vào thành phần cấu trúc của hệ sinh thái cũng được xem là sinh vật tiêu thụ, còn một số loài động vật trong hệ sinh thái cũng được xem là sinh vật phân hủy. Khác với vi sinh vật, động vật tham gia vào quá trình phân hủy ở giai đoạn thô, giai đoạn trung gian, còn vi sinh vật phân hủy các chất ở giai đoạn cuối cùng, giai đoạn khoáng hóa. Ngoài cấu trúc theo thành phần, hệ sinh thái còn có kiểu cấu trúc theo chức năng. Theo E.D. Odum (1983), cấu trúc của hệ sinh thái gồm các chức năng sau: - Quá trình chuyển hóa năng lượng của hệ. - Xích thức ăn trong hệ. - Các chu trình sinh địa hóa diễn ra trong hệ. - Sự phân hóa trong không gian và theo thời gian. - Các quá trình phát triển và tiến hoá của hệ. - Các quá trình tự điều chỉnh.
  3. Một hệ sinh thái cân bằng là một hệ trong đó 4 quá trình đầu tiên đạt được trạng thái cân bằng động tương đối với nhau. Sự cân bằng của tự nhiên, nghĩa là mối quan hệ của quần xã sinh vật với môi trường vật lý mà quần xã đó tồn tại được xác lập và ít thay đổi từ năm này đến năm khác, chính là kết quả cân bằng của 4 chức năng nêu trên trong các hệ sinh thái lớn. Sự cân bằng còn là kết quả của các quá trình điều chỉnh, được diễn đạt bằng ngôn ngữ phân tích hệ thống như chuỗi các “mối liên hệ ngược” trong phạm vi của dòng năng lượng, trong các xích thức ăn, các chu trình sinh địa hóa và tính đa dạng của cấu trúc. Mỗi một chức năng của hoạt động chức năng lại chứa đựng các phần cấu trúc riêng. Chẳng hạn, đối với các chức năng thứ 1, thứ 2 và thứ 8 nêu trên gồm sinh vật quang hợp, sinh vật ăn thực vật, vật dữ, vật ký sinh, cộng sinh, sinh vật lượng của chúng, và trong mối quan hệ khác, như sự bốc hơi nước, lượng mưa, sự xói mòn và lắng đọng. Đối với chức năng 4 và 5 gồm quá trình tăng trưởng và tái sản xuất vật chất, những tác nhân sinh học và vật lý đối với mức tử vong, sự di cư, nhập cư trong hệ sinh thái cũng như sự phát triển của các đặc tính thích nghi Với đặc tính cấu trúc đa dạng như thế, hệ sinh thái ngày càng hướng đến trạng thái cân bằng ổn định và tồn tại vô hạn nếu không chịu những tác động mạnh, vượt quá ngưỡng chịu đựng của mình. III. Các ví dụ về hệ sinh thái Như trên đã đề cập, các hệ sinh thái gồm những hệ tự nhiên và nhân tạo. 1. Các hệ sinh thái tự nhiên Sinh quyển là một hệ sinh thái khổng lồ và duy nhất của hành tinh. Nó được cấu tạo bởi tổ hợp các hệ sinh thái dưới đất, trên mặt đất và dưới nước. Chúng có quan hệ và gắn bó với nhau một cách mật thiết bằng chu trình vật chất và dòng năng lượng ở phạm vi toàn cầu. Do vậy, ta có thể tách hệ thống lớn nêu trên thành những hệ độc lập tương đối, mặc dù trên một dãy liên tục của tự nhiên, ranh giới của phần lớn các hệ không thật rõ ràng. Dưới đây, chúng ta sẽ quan sát một vài hệ sinh thái điển hình như là những ví dụ. 1.1. Rừng quốc gia Cúc Phương. Rừng Cúc Phương là một bộ phận rất nhỏ của khu sinh học rừng mưa nhiệt đới, ở độ cao trung bình 300 - 400m. Những nét nổi bật của hệ sinh thái rừng quốc gia Cúc Phương được biểu hiện như sau: Thành phần sinh giới rất đa dạng, gồm 1944 loài thuộc 908 chi của 229 họ thực vật; 71 loài và phân loài thú, trên 320 loài và phân loài chim, 33 loài bò sát, 16 loài ếch nhái, hàng ngàn loài chân khớp và những loài động vật không xương sống khác, sống ở các sinh cảnh khác nhau. Trong chúng, nhiều loài còn sót lại từ kỷ thứ Ba như cây Kim giao (Podocarpus fleuryi), những loài có ý nghĩa trong nghiên cứu tiến hóa như dương xỉ thân gỗ (Cyathea podophylla) và C. contaminans); nhiều loài động vật đặc hữu (Endemic) như gấu ngựa (Selenarctos thibetanus), vượn đen (Hylobates concolor), vọc quần đùi trắng (Trachipethecus francoisi delacouri), cá niếc hang (Silurus cucphuongensis) . Thảm rừng gồm nhiều tầng, tầng vượt tán với cây cao 15 - 30 m hay 40 - 50m, điển hình là chò chỉ (Parashorea chinensis), gội nếp (Aglaia gigantea), vù hương (Ciannamomum balansae), lát hoa (Chukrasia tabularis), mun (Diospyros mun) v.v. Những hiện tượng sinh thái tiêu biểu của rừng mưa nhiệt đới thể hiện rất rõ ở đây như sự đa dạng của cây leo thân gỗ (20 loài), nhiều cây sống phụ sinh, khí sinh (các loài cây thuộc họ Lan (Orchidaceae), nhiều cây “bóp cổ” thuộc chi Đa (Ficus), chi Chân chim (Schefflera) . . . , nhiều cây ký sinh thuộc họ Tầm gửi (Loranthaceae), nhiều cây có rễ bạnh lớn như sấu cổ thụ (Dracontomelum duperreanum)
  4. Rừng Cúc Phương đang tồn tại ở trạng thái cân bằng ổn định, do đó, cấu trúc về thành phần loài, sự phân hóa trong không gian, cũng như cấu trúc về các mối quan hệ sinh học và những hoạt động chức năng rất đa dạng và phức tạp. . 2. Hồ tự nhiên là một ví dụ điển hình cho các hệ sinh thái ở nước: tất nhiên cũng như các hệ sinh thái trên cạn, hồ nhận nguồn vật chất từ bên ngoài do sự bào mòn từ mặt đất sau các trận mưa và năng lượng từ bức xạ Mặt Trời. Khí dioxyt cacbon (CO2), muối khoáng và nước là nguyên liệu thiết yếu cho các loài thực vật ở nước hấp thụ để tạo nên nguồn thức ăn sơ cấp là tinh bột thông qua quá trình quang hợp. Những loài động vật thủy sinh, chủ yếu là giáp xác thấp (Cladocera, Copepoda) sử dụng thực vật sống trôi nổi (thực vật phù du: Phytoplankton), cá trắm cỏ ăn cỏ nước để tạo nên nguồn thức ăn động vật đầu tiên cho các sinh vật ăn thịt khác và người. Tất cả nhũng chất bài tiết, chất trao đổi và xác sinh vật bị phân hủy bởi vô số các vi sinh vật yếm khí hay kỵ khí đến giai đoạn khoáng hóa cuối cùng. Ở chúng, một phần có thể lắng xuống đáy, còn phần lớn lại tham gia vào quá trình tổng hợp các chất bởi các loài sinh vật trong hồ. Biển, đại dương là những hệ sinh thái khổng lồ. Trong thiên nhiên ta còn gặp những hệ sinh thái cực bé (Microecosystem) như trường hợp các detrit đã đề cập đến ở trên. 3. Các hệ sinh thái nhân tạo Các hệ sinh thái nhân tạo tức là những hệ sinh thái do con người tạo ra. Chúng cũng rất đa dạng về kích cỡ , về cấu trúc . . . , lớn như các hồ chứa, đồng ruộng, nương rẫy canh tác, các thành phố, đô thị và nhỏ như những hệ sinh thái thực nghiệm (một bể cá cảnh, một hệ sinh thái trong ống nghiệm ). Nhiều hệ có cấu trúc đa dạng chẳng kém các hệ sinh thái tự nhiên (như thành phố, hồ chứa ) song cũng có những hệ có cấu trúc đơn giản, trong đó, quần xã sinh vật với loài ưu thế được con người lựa chọn cho mục đích sử dụng của mình, chẳng hạn như đồng ruộng, nương rẫy . . . Những hệ như thế thường không ổn định. Sự tồn tại và phát triển của chúng hoàn toàn dựa vào sự chăm sóc của con người. Nếu không có sự chăm sóc, hệ sẽ suy thoái và nhanh chóng được thay thế bằng một hệ tự nhiên khác ổn định hơn 4. Mối quan hệ giữa quần xã sinh vật và môi trường. Giữa môi trường và quần xã sinh vật có mối liên quan chặt chẽ trên cơ sở tương tác lẫn nhau thông qua các “mối liên hệ ngược”. Các nghiên cứu chỉ ra rằng, một trong những đặc tính quan trọng của mối tương tác đó là tỷ lệ giữa sinh khối và “giá thể” hay sinh cảnh của quần xã. Tỷ lệ này càng nhỏ, trong điều kiện cân bằng ổn định thì tác động của quần xã lên sinh cảnh càng yếu và tính ổn định của môi trường hướng đến việc làm tăng độ bền vững của toàn hệ thống càng kém hiệu quả. Theo quy luật, thành phần không sống (hay giá thể) trong thủy quyển lớn hơn nhiều lần so với các hệ sinh thái trên cạn. Sinh vật lượng trung bình của sinh vật trên cạn đạt đến 12 - 13 kg/m2, còn ở dưới nước chỉ khoảng 10g/m2 (tính theo khối lượng khô), nghĩa là nhỏ hơn 1000 lần. Điều khác biệt ở chỗ, trên cạn sinh vật phân bố theo chiều thẳng đứng chỉ vào khoảng mấy chục mét, còn ở dưới nước chúng lặn xuống sâu đến hàng trăm thậm chí hàng ngàn mét từ mặt xuống đáy. Mặc dù theo khối lượng, thành phần sống trong hệ rất nhỏ so với thành phần chung sống, song vai trò hoạt động và tính chủ đạo của nó lại rất lớn trong các chu trình sinh địa hóa. Chẳng hạn thành phần hoá học của biển cũng như trầm tích đáy của nó chủ yếu được quyết định bởi hoạt động sống của sinh vật (Odum, 1983). Sự hình thành đất canh tác cũng là minh chứng rõ rệt cho vai trò cải tạo đất của các nấm, vi khuẩn, những loài động vật nhỏ bé (giun đất) và thực vật. Khi thích nghi với môi trường, quần xã sinh vật không ngừng phát triển do sự tiến hoá liên tục của các loài. Sinh cảnh rõ ràng có ảnh hưởng lên sự phát triển tiến hoá của sinh vật, nhưng không hoàn toàn là nguyên nhân trực tiếp của quá trình đó. Ngược lại, sự thay đổi của sinh cảnh
  5. dưới ảnh hưởng của quần xã khó quan sát được trong thời gian ngắn, nhưng trong quá trình lịch sử địa chất lại rất lớn lao, ví dụ sự tạo thành các đảo san hô ở Nam Thái Bình Dương, sự biến đổi của hồ thành rừng Qua đó thấy rằng các thành viên cấu tạo nên quần xã càng ở bậc tiến hoá cao, càng đứng cuối xích thức ăn, càng có đóng góp nhiều cho quần xã trong việc làm biến đổi môi trường. 5. Tính bền vững của hệ sinh thái. Một hệ sinh thái được xem là bền vững khi hệ duy trì được trạng thái của nó không đổi theo thời gian, hay tính bền vững là “sức ì” của nó trước những huỷ hoại, hay sự mềm dẽo, tức là khả năng quay trở lại trạng thái ban đầu sau khi bị tác động huỷ hoại của ngoại lực, hay cuối cùng là biên độ (độ lệch) biến động của hệ để phản ứng lại những biến đổi của môi trường mà trong giới hạn đó hệ vẫn có thể quay trở lại trạng thái ban đầu. Dạng đặc trưng của tính bền vững đối với một hệ là sự biến đổi có chu kỳ ổn định khi những yếu tố giới hạn của môi trường cũng xuất hiện một cách tuần hoàn. Những ví dụ sau đây chỉ ra tính bền vững khác nhau của các hệ sinh thái trong tự nhiên trước những biến cố của môi trường. Năm 1970 ở biển Đỏ do mực nước đột nhiên xuống thấp 3 ngày, tại đỉnh các rạn san hô có đến 90% các polyp bị chết. Người ta hy vọng rằng, những rạn này có thể quay về trạng thái ban đầu phải vào cuối thế kỷ. Hệ sinh thái san hô Great Barrier ở Australia bị sao biển hủy diệt 11% vào trước những năm 1973, nhưng đến nay vẫn chưa khôi phục lại hoàn toàn. Vào năm 1972, ở bờ biển Thái Bình Dương thuộc Hoa Kỳ, loài nhím Strongilocentrotus sp. sinh sản như vũ bão đã hủy diệt gần như hoàn toàn một loài tảo thuộc chi Nereocysta, song chỉ 2 năm sau loài tảo này đã trở lại trạng thái ban đầu. Nhiều nhà sinh thái học cho rằng, tính đa dạng càng tăng thì sự bền vững của các quần thể riêng biệt cấu trúc nên quần xã càng giảm (do kích thước quần thể nhỏ lại). Song, để nâng cao sự bền vững của hệ thống thì cấu trúc dinh dưỡng phải trở nên phức tạp hơn. Ở nơi nào sinh vật tiêu thụ có phổ thức ăn rộng thì chúng có thể nhanh chóng chuyển sang sử dụng loại thức ăn có độ phong phú cao nhất. Do đó, sinh vật tiêu thụ ít chịu tác động đối với sự biến động số lượng của các nhóm thức ăn riêng biệt. Trong các hệ sinh thái đơn giản hơn, sự dinh dưỡng của sinh vật tiêu thụ bị giới hạn bởi một số loại con mồi và như vậy, sự dao động về số lượng của con mồi thường gây ra sự biến đổi mạnh số lượng của sinh vật tiêu thụ. Một trong những hậu quả quan trọng của sự biến đổi của các hệ sinh thái là sự diệt vong của các loài riêng biệt. Như A.X. Constantinov (1984) đã nêu vào kỷ Phấn trắng tại các vực nước ở vĩ độ 00- 500 N, những loài thuộc trùng lỗ (Foraminifera) sống nổi bị tuyệt diệt nhanh hơn so với các loài sống trong các vực nước ở cao hơn 500 N. Qua 25 triệu năm kể từ sau khi khu hệ đó được hình thành, tại những thuỷ vực trên chúng chỉ còn được giữ lại tương ứng là 14% và 28%; qua 45 triệu năm sau nữa 8% và 18%, qua 70 triệu năm 0% và 10% (Riclefs, 1979). Nói một cách khác, trong các hệ sinh thái thuộc vĩ độ thấp thành phần loài của Foraminifera kém ổn định hơn so với các hệ sinh thái ở vĩ độ cao. 6. Các chu trình vật chất và dòng năng lượng trong hệ sinh thái 6.1. Các chu trình vật chất 6.1.1 Quá trình tổng hợp và phân huỷ các chất Như một cơ thể hoàn chỉnh, hệ sinh thái cũng thực hiện chức năng sống cơ bản của mình là “đồng hóa” và “dị hóa” hay nói một cách khác là tổng hợp các chất và phân hủy chúng hoặc quá trình sản xuất và tiêu thụ. Hai quá trình này giúp cho hệ tồn tại phát triển để đạt đến trạng thái trưởng thành, cân bằng ổn định trong môi trường. Trên phạm vi toàn cầu, từ khi xuất hiện sự quang hợp và sự phân huỷ, hai quá trình này đã thúc đẩy quá trình phân hóa và tiến hóa của thế giới sinh vật, đồng thời làm giàu cho sinh quyển bằng “của ăn của để”, khi mà sức sản xuất đã vượt lên mức tiêu thụ toàn cầu. 6.1.1.1 Quá trình tổng hợp các chất Quá trình tổng hợp các chất được tiến hành bằng 2 phương thức: Quang hợp và hoá tổng hợp. Những cây xanh sống trên Trái Đất có khả năng quang hợp, mỗi năm sản xuất ra khoảng 100 tỷ tấn chất hữu cơ để nuôi sống những nhóm sinh vật khác. Trong quang hợp, diệp lục (chlorophyl) đóng vai trò rất quan trọng, như một chất xúc tác, giúp cho cây sử dụng được năng
  6. lượng Mặt Trời để biến đổi cacbon đioxyt (CO2) và nước thành cacbon hyđrat, đồng thời thải ra khí oxy (O2) phân tử theo công thức : Năng lượng Mặt trời CO2 + 2H2O (CH2O) + H2O + O2 Như vậy, bất kỳ ở nơi nào có mặt cây xanh, có ánh sáng Mặt Trời, nước, khí cacbonic (CO2) và muối khoáng thì nơi đó xuất hiện quá trình quang hợp, nơi đó nguồn thức ăn sơ cấp đ- ược tạo thành. Ở nơi nào thành phần cây xanh đa dạng, ánh sáng càng nhiều, muối khoáng giàu có, nơi đó sức sản xuất sơ cấp càng lớn. Rừng ẩm nhiệt đới, các rạn san hô, các cửa sông là những bằng chứng hùng hồn cho nhũng nhận định ở trên. + Quang hợp của vi khuẩn Những vi khuẩn có màu đều có khả năng tiếp nhận năng lượng từ ánh sáng Mặt Trời để thực hiện quá trình quang hợp. Phần lớn chúng đóng vai trò không đáng kể trong sản xuất nguồn thức ăn sơ cấp, song chúng lại có khả năng hoạt động ở những điều kiện hoàn toàn không thích hợp cho các loài thực vật khác. Do vậy, chúng có vai trò nhất định trong các chu trình sinh địa hóa. Trong quang hợp, chất bị oxy hóa (cho điện tử) không phải là nước mà là những chất vô cơ chứa lưu huỳnh như hydro sunphua (H2S) chẳng hạn, với sự tham gia của vi khuẩn lưu huỳnh xanh và đỏ (Chlorobacteriaceae và Thiorhodaceae), hoặc các hợp chất vô cơ với sự tham gia của các nhóm vi khuấn không lưu huỳnh đỏ và nâu (Athiorhodaceae) thì quá trình đó không giải phóng oxy phân tử. Năng lượng mặt trời CO2 + 2H2S (CH2O) + H2O + 2S Từ những ví dụ trên, công thức quang hợp có thể viết dưới dạng tổng quát. Năng lượng mặt trời CO2 + 2H2A (CH2O) + H2O + 2A ở đây chất khử (hay chất bị oxy hóa) tức là chất cho điện tử là H2A có thể là nước hoặc các chất vô cơ hay hữu cơ chứa lưu huỳnh, còn A có thể là oxy phân tử hay lưu huỳnh nguyên tố. - Quá trình hóa tổng hợp Quá trình hóa tổng hợp với sự tham gia của một số nhóm vi khuẩn xác định không cần ánh sáng Mặt Trời, song lại cần oxy để oxy hóa các chất. Các vi khuẩn hóa tổng hợp lấy năng lượng từ phản ứng oxy hóa các hợp chất vô cơ để đưa cacbon dioxyt vào trong thành phần của chất tế bào. Những hợp chất vô cơ đơn giản trong hóa tổng hợp được biến đổi, chẳng hạn từ amoniac thành nitrit, nitrit thành nitrat, sunphit thành lưu huỳnh, sắt 2 thành sắt 3 với sự tham gia của các nhóm vi khuẩn Beggiatoa (ở nơi giàu Sunphat) và vi khuẩn Azotobacter, v.v. Hoặc như Thyobacillus rất phong phú trong các suối nước nóng giàu lưu huỳnh, vi khuẩn nitơ (Pseudomonas, Nitrobacter ) có mặt trong nhiều công đoạn của chu trình nitơ. Những vi khuẩn như thế có thể phát triển trong bóng tối, nhưng đa số chúng cần O2. Vi khuẩn hóa tổng hợp chủ yếu tham gia vào việc sử dụng lại (thứ sinh) các hợp chất cacbon hữu cơ chứ không tham gia vào việc tạo thành nguồn thức ăn sơ cấp, nói một cách khác, chúng sống nhờ vào những sản phẩm phân hủy của các chất hữu cơ được tạo ra bởi quá trình quang hợp của cây xanh hay vi khuẩn quang hợp khác. Nhờ khả năng hoạt động trong bóng tối ở các lớp trầm tích, trong đất hay trên đáy các thủy vực, vi khuẩn hóa tổng hợp không chỉ lôi cuốn các chất dinh dưỡng vào sản xuất chất hữu cơ mà còn sử dụng cả nguồn năng lượng “rơi vãi” mà các sinh vật tiêu thụ không tài nào tiết kiệm được trong cuộc sống của mình. Trong phạm vi rộng của sự tiến hóa, người ta chỉ chia sinh vật thành 2 dạng chính: sinh vật tự dưỡng và sinh vật dị dưỡng, còn các dạng trung gian khác, tuy cũng có những giá trị nhất định trong sinh giới, song chúng không đặc trưng và không phổ biến. 6.1.1.2. Quá trình phân hủy các chất Quá trình phân hủy các chất trong tự nhiên xảy ra theo các dạng chính: + Hô hấp hiếu khí hay oxy hóa sinh học, trong đó chất nhận điện tử (hay là chất oxy hóa) là oxy phân tử. Hô hấp hiếu khí ngược với quá trình quang hợp, tức là các chất hữu cơ bị phân giải để cho sản phẩm cuối cùng là khí cacbon dioxyt (CO2) và nước. Do đó, tất cả các loài động thực vật, cũng như đa số đại diện của Monera và Protista mới có năng lượng để duy trì mọi hoạt động sống và cấu tạo nên chất sống riêng cho mình. + Hô hấp kỵ khí xảy ra không có sự tham gia của oxy phân tử. Chất nhận điện tử (hay chất oxy hóa) không phải là O2 mà là chất vô cơ hay chất hữu cơ khác. Nhiều vi sinh vật hoại sinh (vi
  7. khuẩn, nấm, động vật nguyên sinh) tiến hành phân hủy các chất trong điều kiện không có oxy. Chẳng hạn, vi khuẩn mê tan phân giải các hợp chất hữu cơ để tạo thành khí mê tan (CH4) bằng cách khử cacbon hữu cơ hoặc vô cơ (cacbonat) trong các đáy ao hồ. Vi khuẩn mê tan còn tham gia vào việc phân hủy phân gia súc và phân của các loài nhai lại khác. Vi khuẩn Desulfovibrio khử sunphat trong các trầm tích biển sâu để tạo thành H2S như ở biển Đen. - Sự lên men: Đó là quá trình hô hấp kỵ khí, nhưng các chất hữu cơ bị oxy hóa (chất khử) cũng là chất nhận điện tử (chất oxy hóa). Trong quá trình này xảy ra sự khử hydro, kéo theo là sự bẻ gãy các chất hữu cơ phức tạp thành các chất đơn giản hơn. Tham gia vào quá trình lên men có các vi sinh vật kỵ khí nghiêm ngặt hoặc kỵ khí tuỳ ý. Trong trường hợp lên men bởi vi sinh vật kỵ khí tùy ý, ở điều kiện có oxy, vi sinh vật chuyển sang hô hấp hiếu khí. Những vi sinh vật sống kỵ khí, kỵ khí tùy ý, hiếu khí khi tham gia vào các quá trình hô hấp và phân hủy các chất đều đóng vai trò rất lớn trong các hệ sinh thái. Tổng hợp các chất rồi lại phân hủy chúng, nói chung, là chức năng hoạt động của các quần xã sinh vật. Nhờ vậy, vật chất được quay vòng còn năng lượng được biến đổi. Phân hủy là kết quả của cả các quá trình vô sinh và hữu sinh. Những vụ cháy rừng hay cháy đồng cỏ là yếu tố giới hạn, song cũng là yếu tố điều chỉnh quan trọng của tự nhiên. Nhờ sự phân hủy, trong môi trường còn xuất hiện hàng loạt các chất “ngoại tiết” (exocrine), tham gia vào quá trình điều hòa hoạt động sống của các thành viên cấu tạo nên quần xã. Những sinh vật phân hủy (bao gồm cả những loài động vật) tham gia vào việc phân giải các chất ở nhiều công đoạn khác nhau, từ thô đến tinh, và bằng nhiều cách với sự có mặt của hàng loạt các loại enzym đặc trưng mà không một sinh vật nào có đủ. Nhờ vậy, ngay cả các chất khó phân hủy nhất như cellulose, lignin hay các hợp chất humic cũng không thể tồn tại được, mà bị phân hủy tới cùng. Tóm lại, trong quá trình hô hấp hay phân huỷ vật chất bởi các nhóm sinh vật, sản phẩm được hình thành chủ yếu là CO2, H2O, song trong quá trình đó cũng có thể diễn ra chưa đến giai đoạn kết thúc, ở điều kiện như vậy, chất hữu cơ vẫn còn chứa một ít năng lượng nhất định sẽ được các nhóm sinh vật khác sử dụng và phân huỷ đến cùng. 6.1.2. Các chu trình vật chất Chu trình vật chất chính là con đường chuyển động vòng tròn của vật chất qua xích thức ăn trong hệ sinh thái và môi trường. Do đó, vật chất thường được sử dụng lặp đi lặp lại nhiều lần. Đến nay, người ta đã biết có khoảng 40 nguyên tố hoá học trong bảng tuần hoàn Mendeleev tham gia vào thành phần cấu tạo các chất sống, sau đó bị vi sinh vật phân huỷ rồi lại trở lại môi trường, rồi lại được sinh vật thu hồi tạo nên các hợp chất mới. Trong những nguyên tố đã biết, một số có vai trò rất quan trọng như O, H, N,C, P, S tham gia cấu tạo nên các hợp chất của sự sống như protein, lipit, gluxit, các enzym, hoocmon Phụ thuộc vào nguồn dự trữ, trong thiên nhiên có 2 dạng chu trình cơ bản: Chu trình các chất khí và chu trình các chất lắng đọng. Dạng chu trình thứ 1, nguồn dự trữ tồn tại trong khí quyển và trong nước, còn dạng chu trình 2, nguồn dự trữ nằm trong võ Trái Đất hoặc trong các trầm tích đáy. Chu trình các chất khí được đặc trưng bởi nguồn dự trữ lớn trong khí quyển (cacbon diôxit, oxy, nitơ, ôxit lưu huỳnh, hơi nước ) dễ dàng bổ sung cho phần trao đổi với các quần xã; phần vật chất bị thất thoát khỏi chu trình do lắng đọng hoặc tạm thời tách khỏi chu trình ít hơn nên phần quay trở lại chu trình để tái sử dụng nhiều hơn so với các chu trình lắng đọng. Các chất lắng đọng có nguồn dự trữ từ trong vỏ Trái Đất, còn phần lưu động của chúng tham gia vào chu trình được tách ra từ nguồn dự trữ thông qua quá trình phong hoá vật chất hoặc do hoạt động của nền công nghiệp. Đó là chu trình các chất như phôtpho, lưu huỳnh, silic, sắt, mangan Trong khi vận động và trao đổi, vật chất thường bị thất thoát khỏi chu trình nhiều hơn so với chu trình các chất khí, chủ yếu do lắng đọng xuống vùng biển sâu. 6.1.2.1. Chu trình nước (H2O) trên hành tinh Nước trên hành tinh tồn tại dưới 3 dạng: rắn, lỏng và hơi với thể tích khoảng 1,39 tỷ km3. Chúng chuyển dạng cho nhau nhờ sự thay đổi của nhiệt độ trên bề mặt trái đất. Trong điều kiện hiện tại, nước chủ yếu chứa trong các biển và đại dương (chiếm 97,6% tổng số) dưới dạng lỏng, khoảng 2,08% nước nằm ở thể rắn (băng), tập trung chính ở 2 cực Trái Đất. Nước sông, hồ rất ít,
  8. chỉ khoảng 230 nghìn km3 (gồm cả hồ nước mặn), một ít (khoảng 67000 km3) tạo nên độ ẩm của đất, khoảng 4 triệu km3 nước ngầm có khả năng trao đổi tích cực và 14000 km3 dưới dạng hơi nước có mặt trong khí quyển. Chu trình nước có thể được mô tả như sau: Nhờ năng lượng Mặt trời, nước ở bề mặt đất, đại dương bốc hơi. Khi lên cao, nhiệt độ tầng đối lưu giảm, nước tạo thành mây và ngưng tụ thành mưa, thành tuyết rơi xuống bề mặt trái đất, rồi lại theo các dòng chảy về đại dương. Do vậy, nước tuần hoàn trên toàn Trái Đất. Từ chu trình nay chúng ta thấy rằng chỉ có năng lượng bức xạ khổng lồ của Mặt Trời mới làm nên những kỳ tích như vậy. Nước theo chu trình, song phân bố không đồng đều trên hành tinh (theo không gian và thời gian). Chu trình nước xãy ra trên phạm vi toàn cầu, tham gia vào việc điều hoà khí hậu trên toàn hành tinh. Chu trình này do đó còn có tên gọi là chu trình nhiệt - ẩm 6.1.2.2. Chu trình Cacbon (C) Cacbon là một trong những nguyên tố quan trọng tham gia vào cấu trúc của cơ thể, chiếm đến 49% trọng lượng khô. Cacbon tồn tại trong sinh quyển dưới các dạng chất vô cơ, hữu cơ và trong cơ thể sinh vật (Bảng 4.1) Bảng 4.1. Cacbon trong sinh quyển (tỷ tấn) (Bolin et al, 1979) - Khí quyển 692 - Nước đại dương 35.000 - Trong trầm tích > 10.000.000 - Cơ thể sinh vật 3.432 (đang sống 592 và chết 2840) - Nhiên liệu hoá thạch 5.000 + Tổng cacbon hữu cơ 8.432 + Tổng cacbon vô cơ 10.035.692 Cacbon tham gia vào chu trình ở dạng khí cacbon dioxit (CO2) có trong khí quyển. Trong khí quyển hàm lượng CO2 rất thấp, chỉ khoảng 0,03%, nhưng các dạng dự trữ cacbon rất phong phú và đa dạng (đó là than đá, dầu mỏ, khí đốt, CaCO3). Có thể mô tả quá trình tham gia của cacbon dưới dạng CO2 vào và ra khỏi hệ sinh thái như sau: (đối với môi trường trên cạn). Thực vật hấp thụ CO2 trong quá trình quang hợp và chuyển hoá thành những chất hữu cơ (đường, lipit, protein ) trong sinh vật sản xuất (thực vật), các hợp chất này là thức ăn cho sinh vật tiêu thụ các cấp (C1, C2, C3, ), cuối cùng xác bả thực vât, sản phẩm bài tiết của sinh vật tiêu thụ và xác của chúng được sinh vật phân huỷ (nấm, vi khuẩn) qua quá trình phân huỷ và khoáng hoá,
  9. tạo thành các dạng C bán phân giải, các hợp chất trung gian và C trong chất hữu cơ không đạm và cuối cùng thành CO2 (và H2O), CO2 lại đi vào khí quyển rồi lại được thực vật sử dụng. Qua đây, chúng ta nhận thấy rằng ở trong môi trường, C là chất vô cơ nhưng khi được quần xã sinh vật sử dụng thì đã được biến đổi thành C hữu cơ (tham gia cấu tạo nên các chất hữu cơ khác nhau của cơ thể sinh vật). Trong quá trình vận động, cacbon ở nhóm sinh vật sản xuất, các chất hữu cơ tổng hợp được, chỉ một phần được sử dụng làm thức ăn cho sinh vật tiêu thụ còn phần lớn tích tụ ở dạng sinh khối thực vật (như rừng, thảm mục rừng ). Trong quá trình hoạt động sống, các thành phần của quần xã sinh vật sẽ trã lại cacbon dưới dạng CO2 cho khí quyển thông qua quá trình hô hấp, sự cháy rừng và thảm mục rừng cũng trả lại cacbon cho khí quyển. 2- - Ở môi trường nước, C ở dạng hoà tan như cacbonat (CO3 ) và bicacbonat (HCO3 ) là nguồn dinh dưỡng C cho các sinh vật thuỷ sinh. C ở môi trường nước sẽ chu chuyển qua chuổi thức ăn trong thuỷ vực, bắt đầu từ thực vật thuỷ sinh đến động vật thuỷ sinh cở nhỏ (giáp xác) rồi đến động vật thuỷ sinh cở lớn (cá, tôm, cua ). Nhờ hoạt động nghề cá, 1 lượng lớn C sẽ được trã lại cho khí quyễn, bên cạnh đó trong chuỗi thức ăn tự nhiên, các loài chim (ăn cá, tôm ) cũng phần nào đóng góp vào việc giải phóng C vào khí quyển. Trong chu trình C ở môi trường nước, C bị lắng đọng do xác động vật thuỷ sinh có Ca chết tạo nên CaCO3 (đá vôi) làm chu trình bị gián đoạn. Các trầm tích này khi được con người khai thác thì C trở về chu trình. Trong khí quyển, cacbon luân chuyển nhanh hơn, khoảng 0,1 năm đối với Cacbon monooxyt (CO), 3,6 năm đối với Metan (CH4) và 4 năm đối với Cacbon dioxyt (CO2). Tuy vậy trong chu trình C, vẫn có những giai đoạn C bị giữ lại một thời gian rất dài (người ta gọi đó là các chu trình phụ không kín). Trong 100 năm qua, hàm lượng khí CO2 tăng lên là do tăng sử dụng nhiên liệu hoá thạch, huỷ hoại rừng (làm diện tích rừng bị thu hẹp) và canh tác nông nghiệp. Nồng độ CO2 khí quyển gia tăng từ 290 ppmv (0,029%) (ở thế kỷ 19) lên đến 325 ppmv (0,0325%) (ngày nay). Điều này chứng tỏ con người đã can thiệp quá mạnh vào chu trình CO2 Cũng nên biết rằng CO2 là 1 trong 5 khí nhà kính (CO2, CFC, CH4, O3, NO2) gây nên hiệu ứng nhà kính (Greenhouse effect), làm cho trái đất nóng lên. Trong hỗn hợp khí nhà kính, CO2 là thành phần chính của hỗn hợp khí này và chiếm tỷ lệ tương đối cao: 47%, CFC 19%, CH4 15%, O3 7%, NO2 12%. Theo tính toán của các nhà khoa học, khi nồng độ CO2 trong khí quyển tăng gấp đôi, thì nhiệt độ bề mặt trái đất tăng lên khoảng 30C. Các số liệu quan trắc cho thấy, nhiệt độ trái đất đã tăng lên 0,50C trong khoảng thời gian từ 1885 đến 1940 do thay đổi nồng độ CO2. Dự báo, nếu không có biện pháp khắc phục hiệu ứng nhà kính, nhiệt độ trái đất sẽ tăng lên 1,5 - 4,50 C vào năm 2050 và sẽ gây ra nhiều hậu
  10. quả nghiêm trọng, tác động mạnh mẽ tới nhiều mặt của môi trường trái đất, có thể nêu lên như sau: - Nhiệt độ trái đất tăng sẽ làm tan băng ở 2 cực và dâng cao mực nước biển. Như vậy nhiều vùng sản xuất lương thực trù phú, các khu đông dân cư, các đồng bằng lớn, các thành phố lớn, nhiều đảo thấp có thể bị chìm trong nước biển. - Sự nóng lên của trái đất sẽ làm thay đổi điều kiện sống bình thường của các loài sinh vật trên trái đất. Một số loài thích nghi với điều kiện sống mới sẽ thuận lợi phát triển. Trong khi đó nhiều loài sẽ bị thu hẹp môi trường sống hoặc bị tiêu diệt do không kịp thích nghi với các biến đổi của môi trường sống. - Khí hậu trái đất sẽ bị biến đổi sâu sắc, các đới khí hậu có xu hướng di chuyển về phía hai cực của trái đất. Toàn bộ điều kiện sống của tất cả quốc gia bị xáo động. Hoạt động sản xuất nông nghiệp, lâm nghiệp, thuỷ hải sản bị ảnh hưởng nghiêm trọng. - Nhiều loại bệnh tật mới đối với con người xuất hiện, các loại bệnh dịch lan tràn, sức khoẻ của con người bị suy giảm. 6.1.2.3. Chu trình nitơ (N) Nitơ là một nguyên tố có nguồn dự trữ khá giàu trong khí quyển, chiếm gần 80% thể tích, gấp gần 4 lần thể tích khí oxy. Nitơ là thành phần quan trọng cấu thành nguyên sinh chất tế bào, là cấu trúc của protein Nitơ phân tử (Nitơ tự do - N2) có nhiều trong khí quyển, nhưng chúng không có hoạt tính sinh học đối với phần lớn các loài sinh vật, chỉ một số rất ít các loài sinh vật có khả năng đồng hoá được nitơ ở dạng này. Các loài thực vật có thể sử dụng được nitơ ở dạng muối - + như nitrat - đạm dễ tiêu (NO3 ) hoặc ở dạng ion amon (NH4 ), NO2 Chu trình nitơ về cơ bản cũng tương tự như các chu trình khí khác, được sinh vật sản xuất hấp thụ và đồng hoá rồi được chu chuyển qua các nhóm sinh vật tiêu thụ, cuối cùng bị sinh vật phân huỷ trả lại nitơ phân tử cho môi trường. Tuy nhiên quá trình này diễn ra phức tạp hơn nhiều, tuy vậy chu trình nitơ là chu trình xảy ra nhanh và liên tục. Do tính chất phức tạp của chu trình bao gồm nhiều công đoạn theo từng bước: sự cố định đạm, sự amôn hoá, nitit hoá, nitrat hoá và phản nitrat. + Sự cố định đạm (Nitrogen fixation) Cố định đạm trước hết đòi hỏi sự hoạt hoá phân tử nitơ để tách nó thành 2 nguyên tử (N2 2N), trong cố định nitơ sinh học thì đó là bước đòi hỏi năng lượng là 160 Cal/mol. Khi kết hợp nitơ với hydro tạo thành amoniac (N +H NH3). Tất cả các sinh vật cố định nitơ đều cần năng lượng từ bên ngoài, mà các hợp chất cacbon đóng vai trò đó để thực hiện những phản ứng nội nhiệt (Endothermic). Trong quá trình cố định đạm, vai trò điều hoà chính là 2 loại enzym: nitrogenase và hydrogenase; chúng đòi hỏi nguồn năng lượng rất thấp. Trong tự nhiên, cố định đạm xảy ra bằng con đường hoá - lý và sinh học, trong đó con đường sinh học có ý nghĩa nhất và cung cấp 1 khối lượng lớn đạm dễ tiêu cho môi trường đất. Sự cố định đạm bằng điện hoá và quang hoá trung bình hàng năm tạo ra 7,6 triệu tấn (4- 10kg/ha/năm), còn bằng con đường sinh học khoảng 54 triệu tấn . Những sinh vật có khả năng cố định đạm là vi khuẩn và tảo. Chúng gồm 2 nhóm chính: Nhóm sống cộng sinh (phần lớn là vi khuẩn, một số ít tảo và nấm) và nhóm sống tự do (chủ yếu là vi khuẩn và tảo). Ngoài những vi khuẩn cố định đạm cần năng lượng lấy từ nguồn cacbon bên ngoài, còn có loài vi khuẩn tía (Rhodopseudomonas capsulata) có thể sinh sống bằng nitơ phân tử trong điều kiện kỵ khí mà ánh sáng được sử dụng như một nguồn năng lượng (Madigan và nnk, 1979). Những vi khuẩn có khả năng cố định nitơ gồm các loài của chi Rhizobium sống cộng sinh với các cây họ Đậu để tạo nên các nốt sần ở rễ, cố định được một lượng lớn nitơ. Ví dụ, cỏ 3 lá (Trifolium sp.) và đậu chàm (Medicago sp.) cố định được 150 - 400kg/ha/năm. Đến nay, người ta đã biết được xạ khuẩn sống cộng sinh trong rễ của 160 loài cây thuộc 8 chi của 8 họ thực vật khác nhau. Ngoài các loài của chi Alnus, các loài khác đều thuộc các chi Ceanothus, Comptonia, Eleagnus, Myrica, Casuarina, Coriaria, Araucaria và Ginkgo (Torrey, 1978) và chúng sống tập trung ở vùng ôn đới. Trong môi trường nước, vi sinh vật cố định nitơ khá phong phú. Ở đây thường gặp những loài vi khuẩn kỵ khí thuộc các chi Clostridium, Methano, Bacterium, Methanococcus,
  11. Desulfovibrio và một số vi sinh vật quang hợp khác. Ở những nơi thoáng khí thường gặp các đại diện của Azotobacteriaceae (như Azotobacter) và các loài tảo lam (vi khuẩn lam Cyanobacteria) thuộc các chi Anabaena, Aphanozinemon, Nostoc, Microcystis, Nodularia, Gloeocapsa Để hoạt hoá nitơ, những sinh vật tự dưỡng sử dụng năng lượng của quá trình quang hoá hoặc hoá tổng hợp, còn các vi sinh vật dị dưỡng sử dụng năng lượng chứa trong các hợp chất hữu cơ có sẵn trong môi trường. - Quá trình amon hoá (Ammoniafication) hay khoáng hoá (Mineralization). - Sau khi gắn kết hợp chất nitơ vô cơ (NO3 ) thành dạng hữu cơ (thường là nhóm amin- NH2) thông qua sự tổng hợp protein và acid nucleic thì phần lớn chúng lại quay trở về chu trình như các chất thải của quá trình trao đổi chất (urê, acid uric ) hoặc chất sống (protoplasma) trong cơ thể chết. Rất nhiều vi khuẩn dị dưỡng, Actinomycetes và nấm trong đất, trong nước lại sử dụng - các hợp chất hữu cơ giàu đạm, cuối cùng chúng thải ra môi trường các dạng nitơ vô cơ (NO2 , - NO3 và NH3). Quá trình đó được gọi là amôn hoá hay khoáng hoá. Quá trình này là các phản ứng giải phóng năng lượng hay phản ứng ngoại nhiệt. - Quá trình nitrat hoá (Nitrification) + - - Quá trình biến đổi của NH3, NH4 thành NO2 , NO3 được gọi là quá trình nitrit hoá và nitrat hoá hay gọi chung là quá trình nitrat hoá. Quá trình này phụ thuộc vào pH của môi trường và xảy ra chậm chạp, Trong điều kiện pH thấp, tuy không phải tất cả, quá trình nitrat trải qua hai bước: - Bước đầu: Biến đổi amôn hay amoniac thành nitrit + Oxi hoá + 2NH4 + 3O2 2NO2 + 4H + Năng lượng - Tiếp theo: Biến đổi nitrit thành nitrat Oxi hoá 2NO2 +O2 2NO3 + Năng lượng Những đại diện của chủng vi sinh vật Nitrosomonas có thể biến đổi amoniac thành nitrit, một chất độc thậm chí với hàm lượng rất nhỏ. Những vi sinh vật khác như Nitrobacter lại dinh dưỡng bằng nitrit, tiếp tục biến đổi nó thành nitrat. Những vi sinh vật nitrit hoá đều là những sinh vật tự dưỡng hoá tổng hợp, lấy năng lượng từ quá trình oxy hoá. Chẳng hạn, Nitrosomonas khi - chuyển hóa amoniac thành NO2 sinh ra năng lượng 65 Cal/mol, còn Nitrobacter tạo ra năng lượng 17 Cal/mol. Chúng sử dụng một phần năng lượng này để kiếm nguồn cacbon từ việc khử - CO2 hay HCO3 . Như vậy, khi thực hiện điều này để tự tăng trưởng, chúng đã sản sinh ra một lượng đáng kể nitrit hoặc nitrat cho môi trường. Nitrat (cũng như nitrit) dễ dàng lọc khỏi đất, đặc biệt trong đất chua. Nếu không được thực vật đồng hoá, chúng có thể thoát ra khỏi hệ sinh thái này để đến hệ sinh thái khác qua sự chu chuyển của nước ngầm. - Quá trình phản nitrat hoá (Denitrification) Do quá trình phản nitrat đến nitơ phân tử chỉ xảy ra trong điều kiện kỵ khí hay kỵ khí một phần, nên quá trình này thường gặp trong đất yếm khí và trong đáy sâu của các hồ, các biển không có oxy hoặc giàu các chất hữu cơ đang bị phân huỷ. Nhờ chu trình này mà nitơ phân bố dưới nhiều dạng và nhiều khu vực khác nhau trên trái đất. Bảng 2: Nitơ trong sinh quyển (triệu tấn) (Delwich, 1970) + Khí quyển: 3.800.000 Chất hữu cơ 772 - Trong cơ thể 12 - Không sống 760 Nitơ vô cơ của đất 140 Trong vỏ trái đất 14.000.000 + Hoà tan trong đại dương: 20.000 Dạng hữu cơ: 901 - Trong cơ thể 1 - Không sống 900 Nitơ vô cơ (trong nước) 100 Trong trầm tích 4.000.000
  12. Tổng nitơ hữu cơ: 1.673 Tổng nitơ vô cơ: 21.820.240 Khæí Ni - tå Khê quyãøn Sæû cäüng sinh Thæûc váût Caïc vi sinh váût Váût tiãu thuû Váût cháút hæîu cå chãút Phán huyí Khæí Ni - tå Khæí Ni - tå Nitrat- NO3 Nitrit- NO2 Ammonia- Chu trình Ni-tơ (I. Deshmukh, 1986 ) 6.1.2.4. Chu trình photpho (Phosphor - P) Như một thành phần cấu trúc của axit nucleic, lipitphotpho và nhiều hợp chất có liên quan với phốt pho, phốt pho là một trong những chất dinh dưỡng quan trọng bậc nhất trong hệ thống sinh học. Tỷ lệ phốt pho so với các chất khác trong cơ thể thường lớn hơn tỷ lệ như thế bên ngoài mà cơ thể có thể kiếm được và ở nguồn của chúng. Do vậy, photpho trở thành yếu tố sinh thái vừa mang tính giới hạn, vừa mang tính điều chỉnh. 3- Thực vật đòi hỏi photpho vô cơ cho dinh dưỡng. Đó là orthophotphat (PO4 ). Trong chu trình khoáng điển hình, photphat sẽ được chuyển cho sinh vật sử dụng và sau lại được giải phóng do quá trình phân huỷ. Tuy nhiên, đối với photpho trên con đường vận chuyển của mình bị lắng đọng rất lớn. D.R. Lean (1973) nhận ra rằng, sự “bài tiết” phốt pho hữu cơ của thực vật phù du cũng dẫn đến sự tạo thành các chất keo ngoài tế bào mà chúng xem như các phần tử vô định hình chứa phốt pho trong nước hồ. Ở biển, sự phân huỷ sinh học diễn ra rất chậm, khó để phốt pho sớm trở lại tuần hoàn. Tham gia vào sự tái tạo này chủ yếu là nguyên sinh động vật (Protozoa) và động vật đa bào (Metazoa) có kích thước nhỏ. Sự mất phốt pho gây ra bởi 2 quá trình diễn ra khác nhau. Sự hấp thụ vật lý của trầm tích và đất có vai trò quan trọng trong việc kiểm tra hàm lượng photpho hoà tan trong đất và các hồ. Ngược lại, sự lắng đọng, thường kết hợp photpho với nhiều cation khác như nhôm, canxi, sắt, mangan do đó, tạo nên kết tủa lắng xuống. Sự lắng chìm của phốt pho còn gắn với các hợp chất của lưu huỳnh như FeS, Fe2S3 trong chu trình lưu huỳnh và cả với quá trình phản nitrat. Xương, răng động vật chìm xuống đáy sâu đại dương cũng mang đi một lượng phốt pho đáng kể. Song sự tạo thành guano (chất thải của chim biển) hàng nghìn năm dọc bờ tây của Nam Mỹ (Chi lê, Peru) lại là mỏ phân photphat cực lớn. Trên đảo Hoàng Sa, Trường Sa, phân chim trộn với đá vôi san hô trong điều kiện “dầm” mưa nhiệt đới cũng đã hình thành mỏ phân lân quan trọng như thế.
  13. Chu trình Phospho (nguồn www.materials.edu) 6.1.2.5. Chu trình lưu huỳnh (S) Lưu huỳnh, một nguyên tố giàu thứ 14 trong vỏ Trái Đất, là thành phần rất quan trọng trong cấu trúc sinh học như các axit amin, cystein, metionin và chu trình của nó đóng vai trò thiết yếu trong việc điều hòa các muối dinh dưỡng khác như oxy, phốt pho Trung tâm của chu trình - lưu huỳnh có liên quan với sự thu hồi sunphat (SO2 ) của sinh vật sản xuất qua rễ của chúng và sự giải phóng và biến đổi của lưu huỳnh ở nhiều công đoạn khác nhau, cũng như những biến đổi - dạng của nó, bao gồm sunphua hydryl (-SH), sunphua hydro (H2S), thiosunphat (SO2 ) và lưu huỳnh nguyên tố. Tương tự như chu trình nitơ, chu trình lưu huỳnh rất phức tạp, song lại khác với chu trình ni tơ ở chỗ nó không lắng đọng vào những bước "đóng gói" riêng biệt như sự cố định đạm, amon hóa + Sự đồng hóa và giải phóng lưu huỳnh bởi thực vật Lưu huỳnh đi vào xích dinh dưỡng của thực vật trên cạn qua sự hấp thụ của rễ dưới dạng sunphat (CaSO4, Na2SO4) hoặc sự đồng hóa trực tiếp các axit amin được giải phóng do sự phân hủy của xác chết hay các chất bài tiết. Trong điều kiện yếm khí, axit sunphuric (H2SO4) có thể trực tiếp bị khử cho sunphit, bao 2+ + gồm hydrosunphit do các vi khuẩn Escherichia và Proteus (SO4 + 2H = H2S + 2O2). Sunphat cũng bị khử trong điều kiện kỵ khí để cho lưu huỳnh nguyên tố hay sunphit, bao gồm hydrosunphit, do các vi khuẩn dị dưỡng như Desulfovibrio, Escherichia và Aerobacter. Những vi khuẩn khử sunphat yếm khí là những loài dị dưỡng, sử dụng sunphat như chất nhận hydro trong oxy hóa trao đổi chất, tương tự như vi khuẩn phản nitrat sử dụng nitrit hay nitrat. Sự có mặt số lượng lớn của hydro sunphit ở tầng sâu kỵ khí trong phần lớn các hệ sinh thái ở nước là thù địch của hầu hết sự sống. Chẳng hạn, ở biển Đen do giàu sunphat, vi khuẩn Desulfovibrio trong quá trình phân hủy đã sinh ra một khối lượng lớn H2S tồn tại rất lâu ở đáy, cản trở không cho bất kỳ một loài động vật nào có thể sống ở đây, kể cả trong tầng nước dưới độ sâu 200m. Sự tồn tại của các loài vi khuẩn khử sunphat như Methanococcus thermolithotrophicus và Methanobacterium thermautotrophium ở nhiệt độ rất cao (70 - 1000C). Có thể giải thích được quá trình hình thành H2S trong các vùng đáy biển sâu (Hydrothermal), các giếng dầu (Stetter và nnk., 1987). Ở trạng thái cân bằng thì chất độc của loài này đe dọa loài khác, hoạt động của loài này chống lại hoạt động của loài kia, hoặc hỗ trợ cho nhau. Những vi khuẩn lưu huỳnh là một bằng chứng. Vi khuẩn lưu huỳnh không màu như các loài của Beggiatoa oxy hóa hydrosunphit đến lưu huỳnh nguyên tố, các đại diện của Thiobacillus, loài thì oxy hóa lưu huỳnh nguyên tố đến sunphat, loài thì oxy hóa sunphit đến lưu huỳnh. Ngay đối với một số loài trong một giống, quá trình oxy hóa chỉ có thể xuất hiện khi có mặt oxy, còn đối với loài khác khả năng kiếm oxy cho sự oxy hóa lại không thích hợp vì chúng là vi khuẩn tự dưỡng hóa tổng hợp, sử dụng năng lượng được giải phóng trong quá trình oxy hóa để khai thác cacbon bằng một phản ứng khử cacbon dioxit. 6CO2 + 12 H2S → C6H12O6 + 6 H2O + 12S
  14. Các vi khuẩn màu xanh rõ ràng có thể oxy hóa sunphit chỉ đến lưu huỳnh nguyên tố, trong khi đó, vi khuẩn màu đỏ có thể thực hiện oxy hóa đến giai đoạn sunphat: 2- + 6CO2 + 12H2O + 3H2S → C6H12O6 + 6 H2O + 3 SO4 + 6H - Lưu huỳnh trong khí quyển Lưu huỳnh trong khí quyển được cung cấp từ nhiều nguồn: sự phân hủy hay đốt cháy các chất hữu cơ, đốt cháy nhiên liệu hóa thạch và sự khuếch tán từ bề mặt đại dương hay hoạt động của núi lửa. Những dạng thường gặp trong khí quyển là SO2 cùng với những dạng khác như lưu huỳnh nguyên tố, hydro sunphit. Chúng bị oxy hóa để cho lưu huỳnh trioxit (SO3) mà chất này kết hợp với nước tạo thành axit sunphuric (H2SO4). Lưu huỳnh trong khí quyển phần lớn ở dạng H2SO4 và được hoà tan trong mưa. - Lưu huỳnh trong trầm tích Về phương diện lắng đọng, chu trình lưu huỳnh có liên quan tới các “trận mưa" lưu huỳnh khi xuất hiện các cation sắt và canxi (calcium) cũng như sắt sunphua không hòa tan (FeS, Fe2S3, FeS2 hoặc dạng kém hòa tan (CaSO4), sắt sunphua (FeS) được tạo thành trong điều kiện kỵ khí có ý nghĩa sinh thái đáng kể. Nó không tan trong nước có pH trung tính hay nước có pH kiềm. Chu trình lưu huỳnh trong sinh quyển diễn ra cả ở 3 môi trường: đất, nước và không khí, trong cả điều kiện yếm khí và kỵ khí. Chìa khóa của quá trình vận động là sự tham gia của các vi khuẩn đặc trưng cho từng công đoạn: - Sự chuyển hóa của hydro sunphit (H2S) sang lưu huỳnh nguyên tố, rồi từ đó sang 2- sunphat (SO4 ) do hoạt động của vi khuẩn lưu huỳnh không màu hoặc màu xanh hay màu đỏ. - Sự oxy hóa hydro sunphit thành sunphat lại do sự phân giải của vi khuẩn Thiobacillus. - Sunphat bị phân hủy kỵ khí để tạo thành hydro sunphit là nhờ hoạt động của vi khuẩn Desulfovibrio. Chu trình lưu huỳnh trên phạm vi toàn cầu được điều chỉnh bởi các mối tương tác giữa nước - khí - trầm tích và của các quá trình địa chất - khí hậu - sinh học. Chu trình lưu huỳnh trong tự nhiên (nguồn:
  15. 6.1.2.6. Chu trình của các nguyên tố thứ yếu Những nguyên tố thứ yếu với nghĩa rộng, gồm các nguyên tố hóa học thực thụ và cả những hợp chất của chúng. Những nguyên tố này có vai trò quan trọng đối với sự sống, song thường không phải là những chất tham gia vào thành phần cấu trúc và ít có giá trị đối với hệ thống sống. Những nguyên tố thứ yếu thường di chuyển giữa cơ thể và môi trường để tạo nên các chu trình như các nguyên tố dinh dưỡng khác. Tuy nhiên, nói chung, chúng là các chu trình lắng đọng. Rất nhiều chất không thuộc các nguyên tố dinh dưỡng, nhưng cũng tập trung trong những mô xác định của cơ thể do sự tương đồng về mặt hóa học với các nguyên tố quan trọng cho sự sống. Sự tập trung nhiều khi gây hại cho cơ thể, chẳng hạn những chất phóng xạ, chì, thủy ngân Hiện nay, các nhà sinh thái học và môi trường rất quan tâm đến các chu trình này, bởi vì sau cuộc Cách mạng Công nghiệp, con người đã thải ra môi trường quá nhiều các chất mới lạ, độc hại, không kiểm soát nổi. Khi các chất tích tụ trong cơ thể, ở hàm lượng thấp, sinh vật có thể chịu đựng được do các phản ứng thích nghi, song ở hàm lượng vượt ngưỡng, sinh vật khó có thể tồn tại. Tuy nhiên, cần hiểu rằng, rất nhiều chất độc hiện tại, tồn tại trong đất, trong nước với hàm lượng rất thấp, không trực tiếp gây ảnh hưởng tức thời đến hoạt động sống của sinh vật ở các bậc dinh dưỡng thấp, nhưng vẫn có thể làm hại cho những sinh vật ở cuối xích thức ăn do cơ chế "khuếch đại sinh học", nghĩa là tần số tích lũy các chất độc tăng theo các bậc dinh dưỡng. 6.2. Dòng năng lượng trong hệ sinh thái và sự phân bố năng suất sơ cấp Các hệ sinh thái hay toàn sinh quyển tồn tại và phát triển một cách bền vững là nhờ nguồn năng lượng vô tận của Mặt Trời. Sự biến đổi của năng lượng Mặt Trời thành hóa năng trong quá trình quang hợp là điểm khởi đầu của dòng năng lượng trong các hệ sinh thái. Năng lượng Mặt Trời được truyền xuống hành tinh bằng các dòng bức xạ ánh sáng. Số lượng và cường độ chiếu sáng thay đổi theo ngày đêm và theo mùa, theo các vĩ độ và độ lệch của các vị trí trên Trái Đất so với Mặt Trời cũng như môi trường mà các chùm bức xạ phải vượt qua trước khi đạt đến bề mặt hành tinh. Những biến đổi xảy ra liên tiếp như thế là chìa khóa của chiến lược năng lượng của cơ thể cũng như của hệ sinh thái: Nhiệt năng Nhiệt năng Mặt trời Năng lượng bức xạ SVSX Năng lượng hoá học SVTT, SVPH Cơ năng Như vậy, khác với vật chất, năng lượng được biến đổi và vận chuyển theo dòng qua các xích thức ăn rồi thoát khỏi hệ dưới dạng nhiệt, do vậy, năng lượng chỉ được sử dụng một lần, trong khi vật chất được sử dụng lặp đi, lặp lại nhiều lần. 6.2.1. Đặc trưng của năng lượng môi trường
  16. NL vào = NL rat Bức xạ mặt trời Phản xạ bởi khí quyển (34%) UV Bức xạ nhiệt bởi khí quyển (66%) Hiệu ứng A/s nhà kính khả kiến Troposphere Hấp thụ bởi Ozon Nhiệt Bức xạ nhiệt Hấp thụ bởi trái đất của trái đất Trái đất Năng lượng Mặt Trời được chuyển xuống bề mặt Trái Đất dưới dạng sóng ánh sáng (sóng điện từ). Sinh vật sống trên đó đều chịu sự chi phối của dòng năng lượng bức xạ trực tiếp từ Mặt Trời và từ bức xạ nhiệt sóng dài của các vật thể gần. Cả 2 yếu tố trên quy định mọi điều kiện khí hậu và thời tiết trên bề mặt hành tinh (nhiệt độ không khí, bốc hơi nước tạo độ ẩm và mưa, ), còn một phần nhỏ của năng lượng bức xạ được thực vật hấp thụ và sử dụng trong quang hợp để tạo nên nguồn thức ăn sơ cấp. Phần năng lượng này được đánh giá chung vào khoảng từ 0,1 đến 1,6% tổng lượng bức xạ. D.M. Gates (1965) xác định rằng, bức xạ Mặt Trời xuống đến ngưỡng trên của khí quyển có cường độ 2 cal/cm2/phút. Khi phải qua lớp khí quyển, cường độ đó giảm nhanh. Trái Đất chỉ còn nhận được không quá 67% cường độ ban đầu, vào khoảng 1,34 cal/cm2/phút. Hơn nữa, trong tầng khí quyển nhiều thành phần này (hơi nước, các loại khí, bụi ), bức xạ không chỉ giảm đi một cách đơn giản mà còn biến đổi phức tạp do sự phản xạ, tán xạ Sự suy giảm cũng rất khác nhau đối với mỗi thành phần của phổ ánh sáng. Chẳng hạn, trong ngày nhiều mây, phần ánh sáng thuộc phổ hồng ngoại thay đổi rất mạnh, trong khi đó, phần ánh sáng thuộc phổ nhìn thấy và tử ngoại lại ít biến động. Nhìn chung, năng lượng bức xạ khi đạt đến bề mặt Trái Đất trong một ngày đẹp trời (quang mây), chứa 10% bức xạ tử ngoại, 45% thuộc phổ ánh sáng nhìn thấy và 45% thuộc các tia có bước sóng nằm trong dải hồng ngoại. Bức xạ tử ngoại khi xâm nhập xuống Trái Đất đã bị tầng ôzôn hấp thụ và phản xạ lại vũ trụ tới 90% tổng lượng của nó. Lượng còn lại đủ thuận lợi cho đời sống của sinh vật. Nếu tỷ lệ này tăng, nhiều hiểm họa sẽ xảy ra, đe dọa đến sự sống còn của muôn loài. Bức xạ sóng dài chủ yếu tạo nhiệt và bị hấp thụ nhanh chóng, nhất là trên lớp nước mặt của đại dương. Các nghiên cứu đã xác định rằng, khoảng 99% tổng năng lượng nằm trong vùng phổ ánh sáng có bước sóng từ 0,136 đến 4,000 micron; khoảng 50% nguồn năng lượng đó (gồm cả ánh sáng nhìn thấy với bước sóng 0,38 - 0,77) có ý nghĩa sinh thái quan trọng đối với đời sống của sinh giới, đặc biệt đối với sinh vật sản xuất. Điều kiện tồn tại của sinh vật được xác định chủ yếu bởi dòng bức xạ chung, nhưng đối với năng suất sinh học của các hệ sinh thái và đối với chu trình của các yếu tố dinh dưỡng trong các hệ thì tổng bức xạ Mặt Trời xâm nhập vào sinh vật tự dưỡng có ý nghĩa và quan trọng hơn nhiều. Thực vậy, dòng bức xạ chung bị chia xẻ ra nhiều phần, tất nhiên mỗi phần đều có nhũng đóng góp cho sự sống (bảng 4.3) Bảng 3. Sự phát tán năng lượng bức xạ mặt trời (%) trong sinh quyển (Hulbert, 1971) Các dạng biến đổi Tỷ lệ (%) Phản xạ trở lai 30,0 Biến đổi trực tiếp thành nhiệt 46,0 Làm bốc hơi nước và mưa 23,0 Tạo gió, sóng, dòng 0,2 Quang hợp của thực vật 0,8 6.2.2. Dòng năng lượng đi qua hệ sinh thái
  17. NHIỆT Trong tổng số năng lượng rơi xuống hệ sinh thái, thì chỉ khoảng 50% đóng vai trò quan trọng đối với sự tiếp nhận của sinh vật sản xuất, tức là phần năng lượng chủ yếu thuộc phổ nhìn thấy, hay còn gọi là "bức xạ quang hợp tích cực". Nhờ nguồn năng lượng này, thực vật thực hiện quá trình quang hợp để tạo ra nguồn thức ăn sơ cấp, khởi đầu cho các xích thức ăn. Như vậy, thực vật là sinh vật duy nhất có khả năng "đánh cắp lửa Mặt Trời" để làm nên những kỳ tích trên hành tinh: nguồn thức ăn ban đầu và dưỡng khí (O2), những điều kiện thuận lợi, đảm bảo cho sự ra đời và phát triển hưng thịnh của mọi sự sống khác, trong đó có con người. . Sản phẩm của quá trình quang hợp do thực vật tạo ra được gọi là "tổng năng suất sơ cấp" hay "năng suất sơ cấp thô" (ký hiệu là PG). Nó bao gồm phần chất hữu cơ được sử dụng cho quá trình hô hấp của chính thực vật và phần còn lại dành cho các sinh vật dị dưỡng. Trong hoạt động sống của mình, thực vật sử dụng một phần đáng kể tổng năng suất thô. Mức độ sử dụng tùy thuộc vào đặc tính của quần xã thực vật, vào tuổi, nơi phân bố (trên cạn, dưới nước, theo vĩ độ, độ cao ). Chẳng hạn, các loài thực vật đồng cỏ còn non thường chỉ tiêu hao 30% tổng năng lượng sơ cấp, còn ở đồng cỏ già lên đến 70%. Rừng ôn đới sử dụng 50 - 60%, còn rừng nhiệt đới 70 - 75%. Nhiều nghiên cứu đã đánh giá rằng, hô hấp của sinh vật tự dưỡng dao động từ 30 đến 40% tổng năng suất sơ cấp, do đó, chỉ khoảng 60 - 70% còn lại (thường ít hơn) được tích lũy làm thức ăn cho sinh vật dị dưỡng. Phần này được gọi là "năng suất sơ cấp nguyên" (ký hiệu là PN). Từ mức sử dụng trung bình nêu trên của sinh vật sản xuất, tổng năng lượng sơ cấp nguyên tích tụ trong mô thực vật trên toàn sinh quyển được đánh giá là 6 x 1020 calo-gam/năm, trong đó khoảng 70% thuộc về các hệ sinh thái trên cạn, còn 30% được hình thành trong các hệ sinh thái ở nước, chủ yếu là các đại dương. Những hệ sinh thái nông nghiệp hiện đại đóng góp chưa vượt quá 10% của tổng năng suất nguyên toàn hành tinh, vào khoảng 10 tỷ tấn. Năng suất sơ cấp nguyên, tức là phần chất hữu cơ còn lại trong thực vật, được động vật ăn cỏ sử dụng và đồng hóa để tạo nên chất hữu cơ động vật đầu tiên của xích thức ăn. Nguồn này lại tiếp tục được chia xẻ cho những loài ăn thịt, hay vật dữ sơ cấp, rồi từ vật dữ sơ cấp, vật chất và năng lượng lại được chuyển cho vật dữ thứ cấp để đến bậc dinh dưỡng cuối cùng mà xích thức ăn có thể đạt được. Tất nhiên, trong quá trình vận chuyển như thế, vật chất và năng lượng bị hao hụt rất nhiều dưới các dạng: - Không sử dụng được (bức xạ không được hấp thụ, mai, xương cứng của động vật, gai, rễ của thực vật ) - Sử dụng, nhưng không đồng hóa được, thải ra dưới dạng chất bài tiết (nước tiểu, phân) ở động vật, sự rụng lá ở cây. - Mất dưới dạng nhiệt do quá trình hô hấp để lấy năng lượng cho hoạt động sống của sinh vật. Có thể minh hoạ dòng năng lượng đi qua 3 mắt xích (thực vật, sinh vật tiêu thụ cấp 1, sinh vật tiêu thụ cấp 2) của một xích thức ăn đơn giản như sau:
  18. Dòng năng lượng đi như sau: L - Tổng năng lượng bức xạ chung, LA - ánh sáng rơi vào hệ sinh thái; PG - Tổng năng suất sơ cấp hay năng suất sơ cấp thô hay hiệu quả quang hợp (A); PN - Năng suất sơ cấp nguyên; P : Sản lượng thứ cấp (của sinh vật tiêu thụ); NU - Năng lượng không được sử dụng (lắng đọng hay xuất khẩu); NA - năng lượng không được sinh vật tiêu thụ đồng hóa (chất bài tiết); R - Hô hấp. Những con số phía dưới - thứ tự của các đại lượng năng lượng được tích tụ ở các bậc dinh dưỡng trong quá trình vận chuyển (tính bằng Kcal/ m2/ ngày đêm) (Odum, 1983). Từ những thất thoát trên, năng lượng còn lại tích tụ trong cơ thể của nhóm này có thể làm thức ăn cho một nhóm khác cũng rất thay đổi ở từng bậc dinh dưỡng, phụ thuộc vào đặc tính của từng loài, nhóm loài và các điều kiện của môi trường. Có thể minh họa sự thất thoát năng lượng khi vận chuyển trong hệ sinh thái như sau (bảng 4.4). Bảng 4.4. Dòng năng lượng trong các hệ sinh thái hồ và suối và hiệu suất tích tụ năng lượng trong các bậc dinh dưỡng (Lindeman, 1942 và H. Odum, 1957) Hồ Cedar Bog, Suối Silver, Florida Năng lượng Minnesota Cal/m2/năm (%) Cal/m2/năm (%) Bức xạ mặt trời (S) 1.188.720 1.700.000 Bức xạ hữu hiệu (ES) ? 4.100 Sinh vật sản xuất (A) Sản lượng thô (PGA) 1.113 2.0810 Hiệu suất ( PGA/ S hay 0,10 1,2 hay 5,1 ES) 234 11.977 57,60 Hô hấp (R) 21,00 Mất đi do hô hấp (R/PGA) 879 8.833 61,90 Sản lượng tinh (PNA) 83,10 Bị phân hủy hay không được sử dụng Sinh vật ăn cỏ (B) Sản lượng thô (PGB) 148 3.368 Hiệu suất đồng hóa 16,80 38,10 (PGB/PNA) 44 1.890 Hô hấp 29,70 56,10 Mất do hô hấp 104 1.478 Sản lượng tinh PNB 70,20 72,70 Bị phân hủy hay không được sử dụng Sinh vật ăn thịt (C)
  19. Sản lượng thô PGC 31 404 Hiệu suất PGC/PNB 29,8 27,30 Hô hấp 18 329 Mất do hô hấp 58,10 81,40 Sản lượng tinh PNC 13 73 Bị phân hủy hay không 100,00 100,00 sử dụng được Tổng thất thoát do hô hấp 296 26,60 14.196 68,20 Tổng thất thoát do phân 310 27,90 5.060 24,30 hủy 507 45,50 1.554 7,50 Tổng thất thoát do không sử dụng được Trong phạm vi sinh quyển, các nhà khoa học xác đinh rằng, cứ chuyển từ bậc dinh dưỡng thấp sang bậc dinh dưỡng cao kề liền, trung bình năng lượng mất đi 90% , tức là năng lượng tích tụ ở bậc sau chỉ đạt 10% của bậc trước. Chính vì vậy, sống dựa vào nguồn thức ăn nào, sinh vật chỉ có thể phát triển số lượng của mình trong giới hạn của nguồn thức ăn đó cho phép. 6.2.3. Sự phân bố của năng suất sơ cấp trong sinh quyển Nói chung, năng suất sinh học (Productivity) của một hệ sinh thái là khả năng hay điều kiện tốt đảm bảo cho sự thành tạo năng suất hay là mức độ giàu có, phì nhiêu của hệ. E. P. Odum (1983) nhấn mạnh rằng, năng suất sinh học của hệ thống hay sản lượng của các thành phần cấu trúc nên quần thể hoàn toàn không thể xác định được bằng cách cân hay đếm một cách đơn giản những cơ thể có mặt, mặc dù những dẫn liệu về mùa màng thu hoạch trên mặt đất là cơ sở để đánh giá đúng đắn năng suất sinh học sơ cấp, nếu như đại lượng đo đạc của các sinh vật đủ lớn và chất sống được tích lũy theo thời gian không bị phát tán. Đối với mặt đất, năng suất sơ cấp phân bố tập trung chủ yếu trên bề mặt, ở dưới sâu rất ít. Hơn nữa trong vùng vĩ độ thấp, sinh khối trên mặt đất cao hơn so với vùng vĩ độ trung bình. Ngược lại, dưới mặt đất, sinh khối thực vật ở vùng vĩ độ trung bình cao hơn so với vĩ độ thấp. Ở vùng nhiệt đới xích đạo, nếu rừng bị chặt trắng, những trận mưa rào sẽ nhanh chóng rửa trôi lớp đất mõng màu mỡ này, và trời nắng, nhất là vào mùa khô, nước bốc hơi sẽ kéo lên bề mặt những oxyt sắt, nhôm làm cho đất bị kết vón trở thành đá ong hoá. Tuy nhiên, ở vùng vĩ độ thấp, nền nhiệt cao quanh năm, độ ẩm và lượng mưa lớn nên năng suất sinh học của các hệ sinh thái tự nhiên rất cao. Bảng 4.5. Đánh giá năng suất sơ cấp của các hệ sinh thái trong sinh quyển (Dẫn từ O. Dum. 1983) Các hệ sinh thái Diện tích PG Tổng PG (106km2) (kcal/m2/năm) (106kcal/m2/năm) Biển: Khơi đại dương 326,0 1.000 32,6 Khối nước gần bờ 34,0 2.000 6,8 Vùng nước trồi 0,4 6.000 0,2 Cửa sông và rạn san hô 2,0 20.000 4,0 Tổng số 362,4 43,6 Trên cạn: Hoang mạc và đồng rêu 40,0 200 0,8 Đồng cỏ và bãi chăn thả 42,0 2.500 10,5 Rừng khô 9,4 2.500 2,4 Rừng lá kim ôn đớI Bắc bán 10,0 3.000 3,0 cầu 10,0 3.000 3,0 Đất cày cấy (không đầu tư 4,9 8.000 3,9 hay đầu tư ít) 4,0 12.000 4,8 Rừng ẩm ôn đớI 14,7 20.000 29,0 Các hệ nông nghiệp thâm 135,0 57,4 canh Rừng ẩm thường xanh nhiệt đớI và cận nhiệt đớI Tổng số Tổng số chung và giá trị trung 500,0 2.000 100,0 bình PG (Không tính nơi băng
  20. tuyết và số liệu được làm tròn) Ở biển và đại dương sự sống phân bố theo chiều thẳng đứng sâu hơn, dĩ nhiên tầng quang hợp (tầng tạo sinh) chỉ nằm ở lớp nước được chiếu sáng, tập trung ở độ sâu nhỏ hơn 100m, thường ở 50 - 60m, tuỳ thuộc vào độ trong của khối nước. Nước gần bờ có độ trong thấp, nhưng giàu muối dinh dưỡng do dòng lục địa mang ra, còn nước ở khơi có độ trong cao, nhưng nghèo muối. Vì thế, năng suất sơ cấp trong vùng nước nông vùng thềm lục địa trở nên giàu hơn. Năng suất sơ cấp của các vực nước thuộc vĩ độ trung bình cao hơn nhiều so với vùng nước thuộc các vĩ độ thấp, vì ở các vĩ độ thấp, khối nước quanh năm bị phân tầng, ngăn cản sự luân chuyển muối dinh dưỡng từ đáy lên bề mặt, trừ những khu vực nước trồi (Upwelling). Ngược lại ở vĩ độ ôn đới, khối nước trong năm có thể được xáo trộn từ 1 đến 2 lần, tạo điều kiện phân bố lại nguồn muối dinh dưỡng trong toàn khối nước. 7. Sự phát triển và tiến hoá của hệ sinh thái 7.1. Những khái niệm Sự phát triển của hệ sinh thái còn được gọi là "diễn thế sinh thái" (Ecological succession). Diễn thế sinh thái là quá trình biến đổi của hệ sinh thái hay quần xã sinh vật từ trạng thái khởi đầu (hay tiên phong) qua các giai đoạn chuyển tiếp để đạt được trạng thái ổn định, tồn tại lâu dài theo thời gian. Đó là trạng thái đỉnh cực (Climax). Trong quá trình diễn thế xảy ra những thay đổi lớn về cấu trúc thành phần loài, các mối quan hệ sinh học trong quần xã tức là quá trình giải quyết các mâu thuẫn phát sinh trong nội bộ quần xã và giữa quần xã với môi trường, đảm bảo về sự thống nhất toàn vẹn giữa quần xã và môi trường một cách biện chứng. Sự diễn thế xảy ra do những biến đổi của môi trường vật lý, song dưới sự kiểm soát chặt chẽ của quần xã sinh vật, và do những biến đổi của các mối tương tác cạnh tranh - chung sống ở mức quần thể. Như vậy, trong quá trình này, quần xã giữ vai trò chủ đạo, còn môi trường vật lý xác định đặc tính và tốc độ của những biến đổi, đồng thời giới hạn phạm vi của sự phát triển đó. Nếu không có những tác động ngẫu nhiên thì diễn thế sinh thái là một quá trình định hướng, có thể dự báo được. Một cánh đồng hoang để lâu ngày sẽ trở thành trãng cây bụi rồi biến thành rừng, một ao hồ nông theo thời gian sẽ bị lấp đầy thành đồng cỏ rồi phát triển thành rừng. Dựa trên những tiêu chuẩn xác định (như động lực, giá thể, ) diễn thế sinh thái được xếp thành các dạng sau đây: Nếu dựa vào động lực của quá trình thì diễn thế chia thành 2 dạng: nội diễn thế (autogenic succession) và ngoại diễn thế (allogenic succession). Ngoại diễn thế xảy ra do tác động hay sự kiểm soát của lực hay yếu tố bên ngoài. Chẳng hạn, một cơn bão đổ bộ vào bờ, hủy hoại một hệ sinh thái nào đó, buộc nó phải khôi phục lại trạng thái của mình sau một khoảng thời gian. Sự cháy rừng hay cháy đồng cỏ cũng kiểm soát luôn quá trình diễn thế của rừng và đồng cỏ, . . Nội diễn thế được gây ra bởi động lực bên trong của hệ sinh thái. Trong quá trình diễn thế này, loài ưu thế của quần xã đóng vai trò chìa khóa và thường làm cho điều kiện môi trường vật lý biến đổi đến mức bất lợi cho mình, nhưng lại thuận lợi cho sự phát triển của một loài ưu thế khác, có sức cạnh tranh cao hơn thay thế. Sự thay thế liên tiếp các loài ưu thế trong quần xã cũng chính là sự thay thế liên tiếp các quần xã này bằng các quần xã khác cho đến quần xã cuối cùng, cân bằng với điều kiện vật lý - khí hậu toàn vùng. Nếu dựa vào "giá thể" thì diễn thế gồm 2 dạng: diễn thế sơ cấp (hay nguyên sinh) và diễn thế thứ cấp (hay thứ sinh). - Diễn thế thứ cấp (Diễn thế thứ sinh) xảy ra trên một nền (giá thể) mà trước đó từng tồn tại một quần xã nhưng đã bị tiêu diệt. - Diễn thế sơ cấp (Diễn thế nguyên sinh), ngược với trường hợp trên, xảy ra trên một nền (giá thể) mà trước đó chưa hề tồn tại một quần xã sinh vật nào hoặc là chưa có bất kỳ một “mầm móng” của sinh vật xuất hiện trước đây (mầm móng của sinh vật là những dạng tồn tại của sinh vật và có thể phát triển thành 1 cá thể như các bào tử, phấn hoa, thân chồi ngầm, trứng ). Ngoài ra, người ta còn phân biệt thêm 1 kiểu diễn thế khác, đó là diễn thế phân huỷ. Là kiểu diễn thế xãy ra trên một giá thể mà giá thể đó dần dần biến đổi theo hướng bị phân huỷ qua mỗi quần xã trong quá trình diễn thế. Diễn thế này không dẫn đến quần xã đỉnh cực. Đó là trường
  21. hợp diễn thế của quần xã sinh vật trên một thân cây đỗ hay trên một xác động vật, ngườI ta còn gọi kiểu diễn thế này là diễn thế tạm thời. Khuynh hướng diễn thế được xác định bởi phức hợp quần thể các loài trong phạm vi môi trường vật lý cho phép. Ví dụ như, trong vùng quá lạnh hay quá khô hạn, giai đoạn rừng chẳng bao giờ đạt tới. Các quần xã bậc cao có chăng chỉ gồm những cây bụi hoặc những loài của hệ thực vật nguyên sơ. Sự diễn thế của cây rừng ngập mặn (mangroves) ở vùng cửa sông nhiệt đới Nam Bộ cũng là một ví dụ sinh động cho loại diễn thế này. Ở cửa sông các bãi bùn còn lùng nhùng, yếm khí không thích hợp cho đời sống nhiều loài thực vật, duy có các loài bần trắng (Sonneratia alba), mắm trắng (Avicennia alba) là những loài cây tiên phong đến bám trụ ở đây. Sự có mặt và phát triển của chúng làm cho nền đất được củng cố và tôn cao, đặc biệt ở giai đoạn trưởng thành, quần xã này đã tạo điều kiện thuận lợi cho sự xuất hiện của các loài mắm lưỡi đòng (Avicennia officinalis), tiếp sau là đước (Rhizophora mucronata), dà quánh (Ceriops decandra), xu vối (Xylocarpus granatum), vẹt khang (Burguiera sexangula), dây mủ (Gymnanthera nitida), phát triển, hình thành nên một quần xã hỗn hợp rất ưu thế. Trong điều kiện đó, các cây tiên phong không cạnh tranh nổi phải tàn lụi và lại di chuyển ra ngoài. Đất ngày một cao và chặt lại, độ muối tăng dần khi tiến ra biển. Điều đó làm cho quần xã rừng hỗn hợp trên cũng suy tàn ngay trên mảnh đất xâm lược sau một thời kỳ ổn định để rồi lại theo gót cây tiên phong chinh phục vùng đất mới. ở phía sau, điều kiện môi trường lại thích hợp cho sự cư trú và phát triển hưng thịnh của các nhóm thực vật khác như chà là (Phoenix paludosa), giá (Excoecaria agallocha), thiên lý biển (Finlaysonia maritima). Xa hơn nữa về phía lục địa là những thảm thực vật nước ngọt, đặc trưng cho vùng đất chua phèn DIỄN THẾ NGUYÊN SINH Quần xã Quần xã Quần xã tiên phong trung gian đỉnh cực Hình 13. Sơ đồ về sự diễn thế nguyên sinh Nếu dựa vào mối quan hệ giữa sự tổng hợp (P) và phân hủy (R) của quần xã sinh vật, diễn thế lại chia thành 2 dạng khác: diễn thế tự dưỡng và diễn thế dị dưỡng. Diễn thế tự dưỡng là sự phát triển được bắt đầu từ trạng thái với sức sản xuất hay sự tổng hợp các chất vượt lên quá trình phân hủy các chất, nghĩa là P/R > 1, còn diễn thế dị dưỡng ngược lại, được bắt đầu ở trạng thái P/R<1. Cần nhớ rằng, trong diễn thế tự dưỡng với P lớn hơn R thì hệ sinh thái đang tích lũy chất hữu cơ và sinh khối (B), do đó, tỷ số B/P, B/R hoặc B/E (ở đây E = P + R, trong đó E là tổng năng suất sơ cấp) sẽ tăng, tương ứng là sự giảm của tỷ số P/B. Những ví dụ về diễn thế tự dưỡng và dị dưỡng có nhiều, chẳng hạn, sự diễn thế của rừng ngập mặn nêu trên và một hồ nước thải tương ứng. Giai đoạn đầu tiến hóa của sinh quyển cũng là kiểu diễn thế dị dưỡng. Những dạng diễn thế được phân chia ở trên xảy ra tùy thuộc vào những hoàn cảnh cụ thể, vào đặc tính riêng biệt của từng hệ sinh thái, trong một số không ít trường hợp, chúng có quan hệ với nhau, tác động lẫn nhau. 7.2. Quá trình diễn thế và những khuynh hướng biến đổi của các chỉ số sinh thái liên quan đến quá trình đó Như trên đã đề cập, diễn thế sinh thái được khởi đầu từ quần xã tiên phong rồi trải qua các quần xã trung gian để đạt đến trạng thái ổn định cuối cùng. Đó là dãy diễn thế (hay các giai đoạn của một quá trình diễn thế). Đi đôi với quá trình diễn thế của thảm thực vật là sự biến đổi một cách phù hợp của khu hệ động vật, từ những động vật không xương sống đến những loài động vật
  22. có xương sống có kích thước lớn, sống dưới mặt đất, sống trên mặt đất hay trên cây Đối với động vật thì thảm thực vật không chỉ là nơi sống mà còn là nơi sinh sản, là nguồn dinh dưỡng. Sự gắn bó này là hữu cơ thông qua mối quan hệ dinh dưỡng, theo quy luật "rau nào, sâu ấy", "bọ nẹt, dẻ cùi" Quá trình diễn thế đã được mô tả bằng nhiều ví dụ ở những phần trên về kiểu diễn thế nguyên sinh. Trong phần này, chúng ta có thể xem xét một ví dụ về diễn thế thứ cấp trong một vùng ở Đông Nam Hoa Kỳ được E.P. Odum (1959) dẫn ra ở bảng 4.6 đối với các loài chim sống trong đó. Bảng 6. Diễn thế thứ cấp của vùng núi Đông Nam Hoa Kỳ (E. P. Odum, 1959). Hệ thực vật ưu thế Cỏ Cây Cây thân thảo và cây Rừng thông Sồi dẻ đa thân bụi (Đỉnh dạng thảo cực) Tuổi của các giai đoạn (năm) 1-2 2-3 15 20 25 35 60 100 150- 200 Thành phần loài chim với mật độ không thấp hơn 5 loài ở mỗi giai đoạn (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Ammodramus savannarum 10 30 25 Sturnella neglecta 5 10 15 2 Spizella pusilla 35 48 25 8 3 Geothlipus trichas 15 18 Icteria virens 5 16 Richmondena cardinalis 5 4 9 10 14 20 23 Pipilio erythrophthalmus 5 8 13 10 15 15 Aimophila aedtivalis 8 6 4 Dendroica discolor 6 6 Vireo griceus 8 4 5 Dendroica pinus 16 34 43 55 Piranga rubra 6 13 13 15 10 Troglodytes lydovicianus 4 5 20 10 Parus carolinensis 2 5 5 5 Polioptila caerulea 2 13 13 Sitta pusilla 2 5 Contopus virens 10 1 3 Colibria sp. 9 10 10 Parus bicolor 6 10 15 Vibreo flavifrons 3 5 7 Wilsonia citrina 3 30 11 Vibreo olivaceus 3 10 43 Dendrocopus villosus 1 3 5 D. pubescens 1 2 5 Myiarchus crinitis 1 10 6 Hylocichla mustelina 1 5 23 Cocysus americanus 1 9 Mniotilta varia 8 Oporornis formosus 5 Empiodonas virescens 5 Tổng số (Kể cả các loài hiếm gặp không đưa 15 40 110 136 87 93 158 239 238 vào bảng) Trong quá trình tự diễn thế, những khuynh hướng thay đổi các đặc tính chủ yếu của hệ sinh thái cũng được E.P. Odum (1969) tổng kết lại trong 6 nội dung với 23 đặc điểm khác nhau, thể hiện ở 2 trạng thái: đang phát triển và trạng thái đỉnh cực (bảng 4.7) Bảng 4.7: Các khuynh hướng trong sự phát triển của hệ sinh thái (E.P. Odum, 1969). Những thuộc tính của hệ sinh thái Giai đoạn chưa Giai đoạn thành thục thành thục A. Chiến lược năng lượng của quần xã sinh vật Sản lượng thô và hô hấp của quần xã (P/R) 1 1 Sản lượng thô và sinh vật lượng (P/B) Cao Thấp Sinh vật lượng/ đơn vị dòng năng lượng Thấp Cao (B/E) Sản lượng nguyên (hoa lợi) của quần xã Cao Thấp Các xích thức ăn Đường thẳng (chủ yếu ăn Kiểu mạng (chủ yếu ăn phế cỏ) liệu) B. Cấu trúc của quần xã
  23. Tổng vậtchất hữu cơ Nhỏ Lớn Chất dinh dưỡng vô cơ Ngoại sinh học Nội sinh học Đa dạng: giàu về loài Thấp Cao Đa dạng: tính bình quân Thấp Cao Đa dạng sinh hoá Thấp Cao Tính hỗn tạp về sự phân tầng và phân lớp (đa Được tổ chức kém Được tổ chức tốt dạng về kết cấu) C. Lịch sử đời sống Đặc trưng hoá về ổ sinh thái Rộng Hẹp Kích thước cơ thể Nhỏ Lớn Chu kỳ sống Ngắn, đơn giản Dài, phức tạp D. Chu trình các chất dinh dưỡng Nhịp điệu trao đổi chất dinh dưỡng (cơ thể Nhanh Chậm và môi trường) Vai trò của mùn bã (detrit) trong sự tái tạo Không quan trọng Quan trọng E. Áp lực chọn lọc Dạng tăng trưởng Tăng trưởng nhanh, chọn Kiểm tra ngược, chọn lọc “K” lọc “r” Sản phẩm của quá trình sản xuất Số lượng Chất lượng F. Cân bằng chung Cộng sinh trong Kém phát triển Phát triển Bảo tồn chất dinh dưỡng Nghèo Tốt Tính ổn định (chống lại sự xáo động từ bên Kém Tốt ngoài) Entropy Cao Thấp Thông tin Thấp Cao Như vậy, rõ ràng là quá trình phát triển tiến hoá của hệ sinh thái diễn ra do: - Những biến đổi của các điều kiện môi trường vật lý dưới sự kiểm soát chặt chẽ của quần xã sinh vật. -Cấu trúc lại thành phần loài và số lượng cá thể của từng loài phù hợp với mối quan hệ cạnh tranh - chung sống giữa những loài cấu trúc nên quần xã trong điều kiện cân bằng mới của quần xã với môi trường. Đương nhiên, sự diễn thế diễn ra từ từ qua từng giai đoạn và có định hướng. Về mặt logic, có thể xác nhận rằng, trong diễn thế có sự đóng góp của các quá trình xảy ra ở cả mức hệ thống và cả mức quần thể. Tuy nhiên, trong sinh thái học hiện đại, những vấn đề này cũng như một số quan niệm khác về diễn thế vẫn chưa hoàn toàn thống nhất và tiếp tục được tranh cãi giữa các trường phái khoa học. Sự hiểu biết về diễn thế sinh thái cho phép ta chủ động điều khiển sự phát triển của diễn thế theo hướng có lợi cho con người bằng những tác động lên điều kiện sống như: cải tạo đất, đẩy mạnh các biện pháp chăm sóc, phòng trừ sâu bệnh, tiến hành các biện pháp thuỷ lợi để bảo vệ và sử dụng hợp lý nguồn tài nguyên thiên nhiên. 7.3. Khái niệm về đỉnh cực (Climax) Một hệ sinh thái hay một quần xã trong quá trình diễn thế nếu không bị những yếu tố hủy hoại tác động vào thì cuối cùng cũng sẽ đạt được trạng thái ổn định. ở giai đoạn này, những quần thể quan trọng cũng ổn định, mức sinh tử, cả dòng năng lượng và sinh khối đều nằm trong trạng thái cân bằng, sản lượng và sự "nhập khẩu” của hệ cân bằng với tổng lượng hô hấp và xuất khẩu của hệ. Các khuynh hướng biến đổi của hệ thống đã được mô tả và chỉ ra ở bảng trên (bảng 4.4) ở đây, cần nhấn mạnh rằng, quần xã đỉnh cực hầu như ít có khuynh hướng làm biến đổi môi trường. Thực tế, tổ chức phức tạp, cấu trúc hữu cơ đa dạng và sự trao đổi chất ở điều kiện cân bằng đã tạo cho hệ thống khả năng chống đỡ với những biến động của môi trường vật lý và khả năng tồn tại lâu dài. Song điều cần nhớ rằng, quần xã cao đỉnh không tĩnh mà nó vẫn biến đổi một cách rất chậm chạp và những biến đổi đó sẽ xảy ra nhanh nếu môi trường, cả môi trường vật lý và sinh học có những biến động lớn. Chẳng hạn, một số năm trước, cây thích (Acer sp.) là loài phổ biến của rừng đỉnh cực thuộc phần lớn các vùng phía đông bắc Mỹ, nhưng chúng bị hủy hoại do nấm nên ở rừng đỉnh cực hiện tại trong vùng, những cây ưu thế trước đó (Acer sp.) đã được thay bằng loài ưu thế khác (Keeton and Gould, 1993). Ở một phần thời gian xảy ra quá trình diễn thế khó có thể phân biệt rõ ràng giữa giai đoạn đỉnh cực và các giai đoạn sớm gần nó. Theo Keeton và nnk., (1993) trong nhiều thập kỷ, nhiều nhà sinh thái học Hoa Kỳ cho rằng, tất cả các quá trình diễn thế trong một không gian rộng lớn đều quy tụ vào một dạng đỉnh cực, nghĩa là chỉ có một kiểu quần xã đỉnh cực chung (hoặc đơn đỉnh cực) (Monoclimax) cho toàn vùng, những quần xã ưu thế đang tồn tại thời gian rồi cũng sẽ quy về đỉnh cực chung đó. Do vậy,
  24. rừng sồi ở đông bắc Mỹ và quần xã vân sam trắng - linh sam thơm ở một số vùng thuộc Canada mới được xem là các quần xã đỉnh cực. Phần lớn các nhà sinh thái học hiện đại đã phủ nhận quan điểm đỉnh cực chung (monoclimax). Họ cho rằng, sự tập trung của các loài đặc trưng đối với một quần xã đã biết chính là sản phẩm của những điều kiện môi trường địa phương. Môi trường này ổn định lâu dài thì quần xã sống trên đó cũng ổn định lâu dài, tạo nên các dạng đỉnh cực địa phương hay đỉnh cực thổ nhưỡng, đặc trưng cho điều kiện thổ nhưỡng - khí hậu riêng của vùng. Ranh giới giữa những quần xã trên một dãy liên tục thường khó phân định vì chúng là những thành phần của dãy, biến đổi từ từ. Do đó, sự khác nhau giữa các quần xã đỉnh cực trong phần lớn các vùng khác nhau chỉ là tương đối và không thật rõ ràng. Như vậy, hiển nhiên sẽ không có một đỉnh cực chung nào cho một vùng rộng lớn, nhất là trong đó xuất hiện những điều kiện thổ nhưỡng - khí hậu không hoàn toàn giống nhau. Tuy nhiên, gắn tất cả các quần xã đỉnh cực của một vùng rộng lớn vào một đỉnh cực chung, duy nhất cũng có hiệu quả trong nhiều trường hợp, đặc biệt khi nghiên cứu những biến đổi về cấu trúc các quần xã theo gradient của các yếu tố môi trường.
  25. Chương 5 SINH QUYỂN VÀ CÁC KHU SINH HỌC I. Sự tiến hoá của sinh quyển và thế giới sinh vật. 1. Sự ra đời và tiến hóa của sinh quyển Khi sự sống chưa xuất hiện, Trái Đất còn là một hành tinh chết. Bao quanh nó là quyển khí đầy ni tơ, hydro, cacbon dioxyt, amoniac, clo, ôxít lưu huỳnh, hơi nước do núi lửa phun ra. từ Mặt Trời,tia tử ngoại chiếu ngập tràn xuống bề mặt hành tinh. Nhờ đó, hơi nước bị phân ly, tạo ra một lượng oxy rất không đáng kể và sự tiến hóa hóa học được khởi đầu. Nhiều chất hữu cơ phức tạp như acid amin, một thành phần quan trọng để cấu tạo nên các hệ thống sống nguyên thủy xuất hiện. Lớp ôzôn (ozone – O3) được hình thành tuy rất mỏng, song kết hợp với tầng nước đã dệt nên bức màn chắn tia tử ngoại rất hiệu quả, tạo điều kiện thuận lợi cho sự sống đầu tiên ra đời ở vùng nước nông của đại dương cổ, cách chúng ta chừng 3 tỷ năm. Những mầm sống nguyên sơ là những thể kỵ khí, tương tự như nấm men, đã tồn tại suốt một thời gian dài đầy khắc nghiệt nhờ năng lượng kiếm được bằng con đường lên men. Hiệu suất của dạng hô hấp này rất thấp so với hô hấp hiếu khí, nên mầm sống nguyên thủy không thể tiến hóa xa hơn giai đoạn tồn tại của cơ thể tiền nhân - Prokaryote. Sau đó, có lẽ, áp lực của sự chọn lọc tự nhiên do thiếu nguồn thức ăn hữu cơ đã thúc đẩy sự xuất hiện quá trình quang hợp. Nhờ vậy, lượng oxy tăng lên đạt đến 3-4% của mức hiện nay hay khoảng 0,6% của khí quyển. Bộ mặt hành tinh có những biến đổi lớn, từ tiến hóa hóa học sang tiến hóa sinh học, từ tiến hóa dị dưỡng sang kiểu tiến hóa tự dưỡng nhờ sự ra đời và phân bố nhanh chóng của sinh vật có nhân thật - Eukaryote trên bề mặt các đại dương. Tiếp theo, thực vật cũng đã có 1 bước tiến hoá lớn - chuyển từ môi trường nước lên môi trường cạn, đã tiến chiếm lục địa. Hô hấp hiếu khí và nguồn thức ăn sơ cấp ngày một phong phú, tạo khả năng cho sự ra đời và phát triển của những sinh vật đa bào phức tạp ở kỷ Cambri, sự bùng nổ tiến hóa của các dạng sống mới xảy ra như thân lỗ, san hô, thân mềm, rong biển, tổ tiên của thực vật có hạt và động vật có dây sống. Trong các giai đoạn khác nhau của nguyên đại Cổ sinh (Palaeozoi), cuộc sống dưới nước và trên cạn trở nên chật hẹp. Hàm lượng khí oxy dần đạt được mức như hiện nay (20% thể tích khí quyển), chế độ tự dưỡng thay thế cho chế độ dị dưỡng và trở nên thống trị trên hành tinh. Sự phát triển ồ ạt của thực vật trên cạn đủ đảm bảo cho sự xuất hiện
  26. những nhóm động vật lớn như Bò sát cổ đại, Chim, Thú và cuối cùng, một triệu năm trước đây con người ra đời. Sự tiến hóa của sinh vật như các nhà khoa học đã phác thảo, dẫn đến những biến đổi và thúc đẩy sự tiến hóa của môi trường vật lý và hóa học. Nhờ đó, sinh quyển được khai sinh và tiến hóa. Sinh quyển là một vùng sống mỏng, đạt đến độ cao 6-7 km so với mặt biển, trên 10 km ở độ sâu cực đại của đại dương và vài chục mét dưới mặt đất, bao gồm 350.000 loài thực vật, trên 1,3 triệu loài động vật đã được xác định và rất nhiều các loài vi sinh vật. Chúng tạo nên sự cân bằng với nhau và với môi trường, đưa đến trạng thái ổn định của toàn sinh quyển. 1.2. Sự tiến hóa của sinh vật và đa dạng sinh học 1.2.1. Sự tiến hóa của sinh vật . Sự tiến hóa bao gồm cả chọn lọc tự nhiên của Darwin và đột biến gen ở mức độ loài được rộng rãi các nhà khoa học thừa nhận. Tuy nhiên, cho đến nay cũng chưa có sự thống nhất về cơ chế của nó, đặc biệt vai trò tương đối nào của 3 cơ chế chủ yếu: chọn lọc, đột biến và tính ngẫu nhiên; vai trò nào của sự chọn lọc ở các mức tổ chức sinh học cao (đồng tiến hóa và sự chọn lọc nhóm). Các loài sống trong những vùng địa lý khác nhau hoặc bị ngăn cách bởi chướng ngại không gian được gọi là loài "khác vùng phân bố” (Allopatric) hay còn gọi là loài dị hình. Nếu những loài sống trong cùng một địa phương thì chúng được gọi là loài “cùng vùng phân bố" (Sympatric) hay còn gọi là loài đồng hình. Sự hình thành loài dị hình được xem như cơ chế chủ yếu của sự hình thành loài mới. Theo quan điểm truyền thống, 2 phần của 1 quần thể giao phối tự do với nhau cũng có thể bị cách ly về không gian (sống trên các đảo hay ở 2 bên sườn núi cao). Theo thời gian, sự cách ly đó đủ đạt để có được sự cách ly về di truyền nếu như chúng không có cơ hội tiếp xúc với nhau (không có sự trao đổi gen). Điều đó cho phép chúng tồn tại như những loài riêng biệt trong các ổ sinh thái khác nhau. Đôi khi, những sự khác nhau đó có thể tăng lên do sự dịch chuyển các dấu hiệu. Nếu vùng phân bố của 2 loài gần nhau về nguồn gốc lại chồng chéo lên nhau thì ở chúng xuất hiện sự phân ly (Divergent) theo một hay một số dấu hiệu về hình thái, sinh lý hay tập tính trong vùng giao nhau đó, còn sự đồng quy (Convergent) lại xuất hiện trong các phần không chồng chéo, trên đó mỗi loài sống riêng biệt. L.L. Brown và E.O. Wilson (1956) đã giải thích những hiện tượng đó và cho ví dụ về dịch chuyển các dấu hiệu theo kiểu tương tự như trên. Một ví dụ khác về chọn lọc tự nhiên nhanh gây ra do con người. Đó là “màu công nghiệp". Tác nhân này đã "quét" cho bướm một màu đen trong những vùng công nghiệp phát triển ở nước Anh. Nhờ vậy, trên các thân cây trong vùng, bướm bị "bôi đen" sống sót tốt hơn so với những bướm trắng do chim ăn bướm khó phát hiện (Kettlewell, 1956). - Chọn lọc nhân tạo: Đó là sự chọn lọc gây ra do con người với mục đích làm cho các loài thích nghi với nhu cầu của mình. - Đồng tiến hóa: Đó là kiểu tiến hóa của các quần xã sinh vật, nghĩa là quá trình tiến hóa của các mối tương tác giữa các sinh vật mà trong đó sự trao đổi thông tin di truyền giữa các nhóm rất hạn chế hoặc hoàn toàn không có, bao gồm cả các tác động có chọn lọc của 2 nhóm lớn với nhau, phụ thuộc vào nhau một cách mật thiết về mặt sinh thái như thực vật và động vật ăn cỏ, động vật lớn và vi sinh vật sống cộng sinh với nhau, ký sinh và vật chủ, vật dữ - con mồi Đồng tiến hóa còn gặp nhiều trong thiên nhiên như sự phát triển của các cây bao báp và sự vươn dài cổ và chân của hươu cao cổ. Con người càng nâng cao độc tính của thuốc diệt côn trùng thì trên đồng ruộng lại xuất hiện càng nhiều những côn trùng kháng thuốc. - Chọn lọc nhóm: Khi mô tả tính đa dạng và phức tạp tới mức ngạc nhiên của sinh giới, các nhà khoa học đã cho rằng, chọn lọc nhóm còn gây tác động vượt lên mức loài và sự đồng tiến hoá. Chọn lọc nhóm là kiểu chọn lọc tự nhiên trong các nhóm sinh vật mà chúng không nhất thiết phải liên quan chặt chẽ với nhau bằng các mối tương tác bắt buộc. Về mặt lý thuyết, chọn lọc nhóm mang tính đào thải hay duy trì ở tần số thấp những tính trạng có thể bất lợi đối với sự sống sót của các cá thể phải mang gen riêng biệt trong quần thể loài, nhưng lại có giá trị chọn lọc trong nội bộ quần thể và quần xã.
  27. Mặc dù chọn lọc nhóm đã đưa ra được những lý luận chặt chẽ và thoả đáng, nhưng mức độ ảnh hưởng của nó lên quá trình tiến hóa còn chưa thật rõ ràng. Một số nhà khoa học (Saunders và Ho, 1976) cho rằng, do tính phức tạp của môi trường nên không thể chỉ giải thích sự tiến hóa của các loài bằng sự chọn lọc ở mức loài và cá thể, mà phải bằng sự chọn lọc ở mức cao hơn như sự chọn lọc nhóm song, G.C. Williams (1966), S. Levin và Mayr (1981) lại phủ định và cho rằng, chưa hẳn, chọn lọc nhóm đã là một trong các cơ chế chủ yếu của quá trình tiến hóa. 1.2.2. Tiến hoá đồng quy và song song của các loài và sự hình thành các loài đồng hình Trong mối quan hệ giữa cơ thể và môi trường, chúng ta thường gặp những sinh vật thuộc các nhóm phát sinh chủng loại (Phyletic) khác nhau nhưng lại giống nhau về cả hình dạng và tập tính, sống trong những điều kiện môi trường như nhau. Sự giống nhau như thế đã bác bõ ý kiến cho rằng, mỗi một môi trường chỉ tồn tại một và chỉ một loài sinh vật mà thôi. Các bằng chứng tiến hoá chỉ ra rằng, do sự phân ly ngày một xa của các dòng tiến hoá, một số sinh vật đã mất đi sự tương đồng (Homologus) về cấu trúc bên trong của cơ thể đã từng có từ một tổ tiên chung, để có được sự giống nhau một cách tương tự (Analogus) về hình dạng bên ngoài hoặc tập tính của chúng. Quá trình tiến hoá làm xuất hiện các hiện tượng đó được gọi là tiến hoá đồng quy. Trong các ví dụ như thế thì những lực chọn lọc giống nhau đã hoạt động để tạo được sự giống nhau ở những sinh vật ngay từ những điểm xuất phát khác nhau trong quá trình tiến hoá. Ta cũng có một loạt các sự kiện làm ví dụ để chỉ ra sự tiến hoá song song của các nhóm sinh vật có quan hệ về mặt phát sinh chủng loại (Phylogenetic). Như vậy, rõ ràng rằng sự xuất hiện của các nòi, các dạng sinh thái tạo nên sự phân ly (Divergent) và tiến hóa của các loài, còn quá trình tiến hóa đồng quy và tiến hóa song song lại đưa đến những dạng đồng hình, Do đó, làm phong phú thêm đời sống trong sinh giới, trong điều kiện môi trường rất đa dạng. 1.3. Đa dạng sinh học (Biodiversity) Đa dạng sinh học là sự giàu có, phong phú và đa dạng về nguyên liệu di truyền, về loài và các hệ sinh thái. Vì vậy, đa dạng sinh học bao gồm sự đa dạng ở mức độ phong phú các gen trong quần thể gọi là đa dạng di truyền hay đa dạng gen, đa dạng ở mức độ loài là sự phong phú các loài gọi là đa dạng loài; và sự phong phú về các hệ sinh thái - đa dạng hệ sinh thái. Hiện tại, tổng số các loài trong sinh quyển được đánh giá vào khoảng 3 - 70 triệu loài, nhưng mới biết tên 1,4 triệu loài, tức là gần 2% tổng số (Raven and Wilson, 1992; Groombridge, 1992, ) (bảng 5.1). Nhiều nhóm phân loại lớn còn biết rất ít như vi sinh-vật, côn trùng Ngay ở những nhóm động vật bậc cao như thú, trong thế kỷ này khoa học cũng đã được bổ sung thêm một số loài mới. Bảng 8. Số lượng các loài hiện sống đã được mô tả Stt Giới , ngành và bậc phân loại thấp Tên phổ thông Số lượng loài hơn đã được mô tả (1) (2) (3) (4) I Virus 1.000 II Monera Khởi sinh 4.760 Bacteria Vi khuẩn 3.000 Myxoplasma Vi khuẩn 60 Cyanophycota Vi khuẩn lam 1.700 III Fungi Nấm 46.983 Zygomycota Nấm tiếp hợp 665 Ascomycota Nấm túi 26.850 Basidiomycota Nấm đảm 16.000 Oomycota Nấm trứng 580 Chitridomycota Nấm cổ 575 Acrasiomycota Nấm nhầy tế bào 13 Myxomycota Nấm nhầy hợp bào 500 IV Algae Tảo 26.900 Chlorophyta Tảo lục 7.000 Phaeophyta Tảo nâu 1.500 Rhodophyta Tảo đỏ 4.000 Chryrophyta Tảo vàng 12.500 Pyrrophyta Tảo giáp 1.100
  28. Euglenophyta Tảo mắt 800 V Plantae Thực vật 248.428 Bryophyta Rêu 16.600 Psilophyta Lá thông 9 Equisetophyta Cỏ tháp bút 15 Lycopodiophyta Thông đất 1.275 Polypodiophyta Dương xỉ 10.000 Pinophyta Thông (Hạt trần) 529 Magnoliophyta Ngọc Lan (Hạt kín) 220.000 - Magnoliopsida - Lớp Ngọc Lan 170.000 - Liliopsida - Lớp Hành 50.000 VI Protozoa Động vật nguyên 30.800 Protozoa chung sinh 30.800 Động vật nguyên sinh VII Invertebrata Động vật không 989.761 Porifera xương sống 5.000 Cnidaria, Ctenophora Thân lỗ 9.000 Platyhelminthes Ruột khoang và sứa 12.200 Nematoda lược 12.000 Annelida Giun dẹt 12.000 Mollusca Giun tròn 50.000 Echinodermata Giun đốt 6.100 Arthropoda Thân mềm 874.161 Các ngành thứ yếu khác Da gai 9.300 Chân khớp VIII Chordata Động vật có dây 43.853 Tunicata sống 1.250 Cephalochordata Động vật có bao 23 Vertebrata: Đầu sống Agnatha Có xương sống: 63 Chondrichthyes Không hàm 843 Osteichthyes Cá sụn 18.150 Amphibia Cá xương 4.184 Reptilia Lưỡng cư 6.300 Aves Bò sát 9.034 Mammalia Chim 4.000 Thú Tổng số các loài đã xác định được 1.392.485 (Wilson và Peter Eds, 1988) Đa dạng sinh học ở Việt Nam. Do điều kiện địa hình và khí hậu đa dạng nên ở Việt Nam đã hình thành hệ động vật và thực vật rất phong phú. Sự phong phú thành phần loài sinh vật ở Việt nam được thể hiện ở bảng sau: Nhóm sinh vật Số loài đã xác Số loài có trên Tỷ lệ % định được (SV) thể giới (SW) SV/SW 1.Thực vật nổi -nước ngọt 1.438 -biển 537 2.Rong, cỏ -nước ngọt Khoảng 20 -biển 677 3.Thực vật ở cạn Khoảng 11.400 220.000 5 -Rêu 1.030 22.000 4,6 -Nấm lớn 826 50.000 1,6 4.Động vật không xương sống ở nước -nước ngọt Khoảng 800 -biển Khoảng 7.000 5. ĐVKXS ở đất Khoảng 1.000
  29. 6. Giun sán ký sinh ở gia 161 súc 7. Côn trùng 7.750 8.Cá 19.000 13 -nước ngọt Trên 700 -biển 2.038 9.Bò sát 260 6.300 5 Bò sát biển 21 10.Lưỡng cư 120 4.184 2,9 11.Chim 840 9.040 9,3 12.Thú 310 4.000 7,5 Thú biển 17 (Nguồn: Viện sinh thái và tài nguyên sinh vật, 2005) Đa dạng sinh học có rất nhiều giá trị trong đời sống của tự nhiên và của con người. Theo J. Mc Neely và nnk (1991) giá trị đó được thể hiện trong các khía cạnh sau: - Các hệ sinh thái của trái đất là cơ sở sinh tồn của sự sống cho cả trái đất và cả con người. Các hệ sinh thái đảm bảo cho sự chu chuyển oxy và các nguyên tố dinh dưỡng khác trên toàn hành tinh. Chúng duy trì tính ổn định và sự màu mỡ của đất nói riêng hay của hành tinh nói chung. Các hệ sinh thái bị suy thoái thì tính ổn định và sự mềm dẽo; linh động của sinh quyển cũng bị thương tổn. - Các hệ sinh thái tự nhiên có giá trị thực tiễn rất cao: Rừng hạn chế sự xói mòn của mặt đất và bờ biển, điều tiết dòng chảy, loại trừ các cặn bã làm cho dòng chảy trở nên trong và sạch; các bãi cỏ biển, các rạn san hô ở thềm lục địa làm giảm cường độ phá hoại của sóng, dòng biển, là nơi nuôi dưỡng, cung cấp thức ăn và duy trì cuộc sống cho hàng vạn loài sinh vật biển. - Duy trì và cung cấp nguồn gen và là kho dự trữ các nguồn gen quý - hiếm cho cây trồng và vật nuôi cho tương lai. - Nhiều loài động thực vật được sử dụng làm thức ăn cho con người, cho gia súc, làm thuốc, lấy gỗ làm nhà; phục vụ cho phát triển kinh tế, làm chất đốt lấy năng lượng, làm cây cảnh Hiện tại, đã thống kê được 30.000 loài cây có những phần ăn được, nhưng chỉ mới khoảng 7.000 loài được trồng hoặc thu hái làm thức ăn, trong đó có 20 loài đã cung cấp đến 90% lượng tinh bột trên toàn thế giới. - Sinh vật trong quá trình tiến hoá đã tồn tại và phát triển một cách bền vững và hài hoà với nhau, tạo nên một thiên nhiên đa dạng, phong phú và hấp dẫn, làm nền tảng cho mọi cảm hứng về thẩm mỹ, nghệ thuật và văn hóa của con người. Với những giá trị to lớn mà đa dạng sinh học đã đem đến cho loài người, đương nhiên, chúng phải được tồn tại như một quyền lợi hiển nhiên mà chúng đã giành được trong cuộc đấu tranh sinh tồn đầy khắc nghiệt. Con người liệu có hiểu điều đó và tại sao lại hủy diệt chúng, những loài sinh vật đã nuôi sống chính con người? . II. Các khu sinh học (Biome) Các hệ sinh thái trong sinh quyển tồn tại ở hai môi trường có sự khác biệt nhau rất nhiều về đặc tính lý - hoá và sinh học. Đó là môi trường trên cạn và môi trường dưới nước, môi trường dưới nước lại được chia thành môi trường nước ngọt và nước mặn. 1. Các khu sinh học trên cạn. Ở trên cạn, các thảm thực vật ở trạng thái cao đỉnh khí hậu (Climatic climax) hay còn được gọi là các quần hệ thực vật (Formation), chúng chiếm sinh khối rất lớn và gắn liền với khí hậu địa phương, do đó có tên là quần xã cảnh quan vùng địa lý hay gọi là khu sinh học (Biome). Biome là một hệ sinh thái lớn, có giới hạn tương đối và đặc trưng bởi khí hậu đặc thù, là quần xã lớn bao gồm các loài động vật sống trong quần hệ thực vật và đặc tính chủ yếu cho phép phân chia và nhận dạng các khu sinh học chính là các dạng sống (cây cỏ, cây bụi, cây gỗ ). Trên lục địa, ở nhiều vùng do điều kiện khí hậu rất khác nhau, đặc biệt là nhiệt độ và lượng mưa đã hình thành các khu sinh học chính như đài nguyên (đồng rêu) ở Bắc Cực và núi cao (Alpin), rừng lá kim, rừng lá rộng rụng lá ôn đới Độ cao địa hình cũng ảnh hưởng mạnh đến các
  30. hệ sinh thái, những thay đổi các quần hệ thực vật khi độ cao tăng cũng giống như sự thay đổi từ vùng khí hậu nóng đến vùng khí hậu lạnh. Dưới đây, chúng ta xem xét đặc tính của từng khu sinh học một cách khái quát. Hình 14: Sự phân bố các khu sinh học theo lượng mưa và nhiệt độ (theo Purves, 1.1. Đồng rêu hay đài nguyên (Tundra) Hình 15: Khu phân bố của lãnh nguyên (Nguồn: Đồng rêu bao quanh Bắc cực, Greenland và một vòng vòng đai phần bắc của lục địa Âu - Á, Bắc Mỹ. Đây là một đồng bằng không cây cối, nhiều đầm lầy giá lạnh, băng tuyết. Nhiệt độ rất thấp, độ ngưng tụ hơi nước rất kém, mùa sinh trưởng của sinh vật ngắn (khoảng 60 ngày); nền đất bị đông cứng. Do đó, đời sống rất khắc nghiệt. Số lượng loài thực vật ít, chủ yếu là cỏ bông, rêu và địa y. Động vật đặc trưng cho vùng là hươu tuần lộc (Rangifer tarandus), hươu kéo xe (R. caribou), thỏ, chó sói Bắc cực, Lemmus, Tarmigan, gấu trắng Bắc cực, chim cánh cụt . . . Chúng có thời gian ngủ đông dài, nhiều loài chim sống thành đàn lớn, di cư xa xuống vùng vĩ độ thấp để tránh rét vào mùa đông. 1 2. Rừng lá kim (Taiga) Hình 16: Khu phân bố của rừng lá kim (Nguồn:
  31. Khu sinh học này nằm kế sau đồng rêu về phiá nam. ở Siberi diện tích của thảm thực vật này rất lớn, đạt diện tích khoảng 85 triệu cây số vuông (14.000 km x 6.000 km). Kéo dài từ Bắc Mỹ sang Châu Âu. Đặc trưng của vùng là đất bị phủ băng tuyết, mùa đông cực kỳ lạnh và khắc nghiệt nhưng không bằng khu sinh học đồng rêu. Lượng mưa thấp, khoảng 300 - 500mm/năm. Đất nghèo muối dinh dưỡng, thuộc loại Potzon, đất chua và có tầng thảm mục cây lá kim bán phân huỷ dày. Trong vùng có nhiều đầm lầy, hồ, suối Thực vật gồm cây lá kim thường xanh, thân thẳng, ken dày, che bóng như các loài thông (Pinus). Cây bụi và thân thảo do đó, kém phát triển. Dọc theo những nơi có nước là dương liễu, bạch dương, phong, linh sam (Abies); vân sam (Epicea); thông rụng lá (Larix) các loài cây này là giá thể cho các loài nấm, địa y phát triển phong phú. Trong vùng còn có mặt các loài cây lớn, cổ thụ như cây Sồi (Sequoia) khổng lồ, cao đến trên 80 m với đường kính 12m và sống đến 3000 năm. Cây Sồi sống ở ven biển còn cao hơn (110 m, sống 2000 năm). . . Hệ động vật đa dạng hơn so với đồng rêu. Ngoài các loài côn trùng, những động vật bậc cao gồm hươu Canada (Cervus canadaensis), nai sừng tấm (Alches machlis), thỏ, linh miêu, cáo, chó sói, gấu , chim định cư không nhiều. Điều kiện môi trường có ảnh hưởng rõ rệt đối với các loài động vật, chúng có tập tính di cư, sự ngủ đông hoặc dự trữ thức ăn. 1.3. Rừng lá rộng rụng lá theo mùa vùng ôn đới Hình 17: Khu phân bố của rừng lá rộng rụng lá theo mùa vùng ôn đới (Nguồn: Trước đây loại rừng này đã bao phủ phần phía đông của Bắc Mỹ, toàn bộ châu Âu, một phần lãnh thổ Trung Quốc, Nhật Bản, châu Đại Dương và phần nam của châu Mỹ La Tinh. Nền văn minh của châu Âu, Bắc Mỹ, Viễn Đông phát triển đã huỷ diệt thảm thực vật này. Khu sinh học này có lượng mưa vừa phải (700 - 1.200mm/năm), ấm về mùa hè, nhưng mùa đông vẫn khắc nghiệt. Đất giàu chất hữu cơ và có lớp thảm mục dày, tầng đất dày và giàu sét ở lớp dưới. Thành phần loài thực vật của vùng rất đa dạng về chi; loài và được phân thành nhiều tiểu vùng. ở Bắc Mỹ với những loài đặc trưng là thông trắng, thông đỏ, sến đỏ (ở phía đông Bắc Mỹ) , song đã bị khai thác bừa bãi vào những năm 80 và 90 của thế kỷ XIX. Các tiểu vùng khác có nhiều loài cho gỗ cứng như sồi; hồ đào; dẻ gai. Hệ động vật giàu có về thành phần loài và số lượng, từ côn trùng đến thú lớn. Thú có nhiều như hươu, lợn rừng, chó sói, cáo, các loài gặm nhấm Những loài động vật sống trên cây cũng rất đa dạng như sóc, chuột sóc, nhiều loài chim leo trèo như gõ kiến, nhiều loài côn trùng (sâu bọ) ăn gỗ. Chu kỳ biến động theo mùa rõ rệt, Nhiều loài có tập tính di cư xa, nhiều loài ngủ đông, đặc biệt số loài hoạt động ban ngày nhiều hơn hẳn số loài hoạt động ban đêm. 1.4 Rừng mưa nhiệt đới
  32. Hình 18: Khu phân bố của rừng mưa nhiệt đới (Nguồn: Đây là thảm thực vật phát triển phong phú nhất trong các thảm thực vật trên Trái Đất, quê hương của các loài lim, lát, samu, tếch, đinh, Rừng mưa nhiệt đới tạo thành một vành đai quanh xích đạo, tập trung nhiều ở lưu vực sông Amazone (Braxin); Công gô và khu vực ấn Độ - Malaixia với số loài giàu nhất thế giới Khí hậu vùng nhiệt đới nóng và ẩm, nhiệt độ trung bình năm cao (24 - 300C) và gần như ổn định quanh năm, lượng mưa lớn (đến 4500mm), có nơi lượng mưa đạt kỷ lục cao như Camơrun (l0.170 mm/năm). Đất đa dạng, giàu chất dinh dưỡng. Đặc trưng của rừng mưa nhiệt đới là phân tầng, tán hẹp chen nhau, thường có 5 tầng, trên cùng là các tầng ưa sáng với nhiều cây cao, trung bình 46 - 55m, có khi đến 60m. Có nhiều dây leo thân gỗ, nhiều loài cây sống khí sinh, bì sinh. Cây dây leo có khi dài tới 240m với đường kính 15 cm, phổ biến trong rừng là cây “bóp cổ”. Cây thân thảo trong rừng nhiệt đới không phải là cỏ mà là tre nứa cao đến 20 m. Cây thân gỗ, bì sinh, cây leo phủ kín không cho ánh sáng lọt xuống nền đất rừng, do vậy, trên mặt đất cây cỏ nghèo nàn, chỉ có những loài cây cây chịu bóng ưa ẩm, các loài nấm, mốc, địa y mọc trên lá mục, trên thân cây. Các loài thực vật nhiệt đới có nhiều đặc điểm như hoa trái phát triển xung quanh thân cây; cây phát triển bạnh gốc hay có rễ phụ, rễ bò nổi trên mặt đất. Động vật giới đa dạng và phong phú về thành phần loài. Do tán rừng là thảm liên tục nên nhiều nhóm động vật chuyên sống ở đây, giỏi leo trèo, di chuyển từ cây này sang cây khác như khỉ, vượn, sóc bay cầy bay. Dưới đất là voi, lợn rừng, bò rừng, trâu rừng, hươu, hoẵng, nai, gấu, hổ, báo Ngoài ra động vật không xương sống cũng rất phong phú và đa dạng, đặc biệt là côn trùng, nhện, bọ cạp, muỗi, vắt rất nhiều. Ở một số nơi, còn có kiểu rừng mưa biến đổi. Đó là rừng rụng lá vào mùa khô do hoạt động của gió mùa và rừng hỗn giao ở vùng nhiệt đới núi cao. Rừng mưa nhiệt đới được mệnh danh là lá phổi xanh của hành tinh, nhưng hiện tại đang bị thu hẹp một cách nhanh chóng do khai thác quá mức và do đốt rừng làm rẫy. 1.5. Savan 1.5.1. Thảo nguyên và savan nhiệt đới. Hình 19: Khu phân bố của Savan nhiệt đới (Nguồn:
  33. Savan nhiệt đới là thảm thực vật thân cỏ, có một số ít cây gỗ hay nhóm cây gỗ phân bố trong vùng, lượng mưa cao (1.000 - 1500 mm), nhưng có một hoặc hai mùa khô kéo dài, thường xuất hiện những đám cháy. Vùng rộng lớn nhất của khu sinh học này nằm ở Trung và Đông Phi, sau nữa là vùng Nam Mỹ và châu Đại Dương. Thành phần các loài thực vật nghèo, ưu thế là những loài thuộc chi các Panicum, Pennisetum, Adropogon, Imperata . . . của họ Cỏ (Poaceae). Cảnh quan savan châu Phi còn rải rác những cây keo Acacia tán phẳng, có gai, những cây thuộc họ Đậu (Fabaceae), cây bao báp (Adansonia) và các loài cây cọ thuộc họ Cau dừa (Palmae). Đây cũng là nơi tập trung những đàn lớn sơn dương, gơ nu, trâu, ngựa vằn . . . thuộc tập đoàn móng guốc và những loài ăn thịt chúng như sư tử, báo, linh cẩu . . ., Chim gồm đại bàng. . . rất điển hình. 1.5.2. Thảo nguyên vùng ôn đới Hình 19: Khu phân bố của thảo nguyên vùng ôn đới (Nguồn: Thảo nguyên vùng ôn đới phân bố ở những nơi có lượng mưa trung bình năm nằm giữa hoang mạc và rừng (250-750 mm). Sự tồn tại của khu sinh học này phụ thuộc vào nhiệt độ, lượng mưa theo mùa, dung tích nước của đất. Độ ẩm của đất là giới hạn hàng đầu đối với sự phân giải các chất hữu cơ bởi vi sinh vật. Những thảo nguyên rộng lớn tập trung ở nội đia Âu - Á, Bắc và Nam Mỹ và châu Đại Dương Ở Bắc Mỹ, thảo nguyên phân thành thảo nguyên cỏ cao với các loài thân cỏ cao 150- 240cm như Andropogon gerardi, Panicum virgatum, Sorghastrum natans và Spartina pectinata; thảo nguyên cỏ thấp trung bình (60 - 120cm) như Andropogon scoparius, Stipa spartea, Sporobolus heterolepis . . . và thảo nguyên cỏ thấp (dưới 60 cm) với các loài Buchloe dactyloides, Bouteloua gracilis, Poa sp Động vật trong vùng là những loài ăn cỏ, ưu thế là tập đoàn móng guốc và nhiều loài ăn thịt như sư tử, chó rừng. . . Diện tích các thảo nguyên bị thu hẹp đáng kể do con người chuyển chúng thành các đồng cỏ chăn nuôi hoặc do chăn thả quá mức đưa đến sự nghèo kiệt và hoang mạc hóa. 1.6. Hoang mạc Hoang mạc phân bố trong vùng có lượng mưa rất thấp (dưới 250 mm/năm), đôi khi có cả ở nơi có lượng mưa lớn hơn nhưng phân bố không đều, khả năng ngấm và bốc hơi nhanh. Nhiệt độ chênh lệch giữa ngày - đêm và các mùa rất lớn. Những hoang mạc tuyệt đối không có mưa là Chile và trung Sahara. Các hoang mạc lớn thường tạo nên vành đai liên tục quanh Trái Đất ở khoảng giữa chí tuyến Bắc và chí tuyến Nam về 2 phía của vùng nhiệt đới xích đạo. Ở Bắc bán cầu, hoang mạc lớn nhất là Sahara (9 triệu km2). Các hoang mạc khác gồm Á Rập, Thổ Nhĩ Kỳ, Iran, Ấn Độ, Taklamakhan và Go bi. ở Bắc Mỹ, phần tây Hoa Kỳ hoang mạc mở rộng tới Mexico (Gritbađin, Mohavơ, Sonoran, Chihuahua). Phía nam xích đạo có hoang mạc Patagoni (Achentina), Atacama (Chile), Kalahari (châu Phi) và hoang mạc châu Đại Dương (chiếm 44% lục địa châu Đại Dương). Thực vật hoang mạc rất nghèo, trừ các "ốc đảo", gồm những cây trốn hạn (cây 1 năm duy trì ở dạng hạt, phát triển nhanh trong thời gian có mưa rồi chết) và cây chịu hạn (rụng lá vào mùa không mưa, lá biến thành gai, hoặc cây mọng nước như cây xương rồng (Saguaro), khi trưởng thành nặng 10 tấn; trong đó 80% là nước. Những cây hoặc có rễ ăn rất sâu xuống đất hoặc rễ lan